{"title":"LegionFS:一个安全的、可扩展的文件系统,支持跨域高性能应用","authors":"B. White, M. Walker, M. Humphrey, A. Grimshaw","doi":"10.1145/582034.582093","DOIUrl":null,"url":null,"abstract":"Realizing that current file systems can not cope with the diverse requirements of wide-area collaborations, researchers have developed data access facilities to meet their needs. Recent work has focused on comprehensive data access architectures. In order to fulfill the evolving requirements in this environment, we suggest a more fully-integrated architecture built upon the fundamental tenets of naming, security, scalability, extensibility, and adaptability. These form the underpinning of the Legion File System (LegionFS). This paper motivates the need for these requirements and presents benchmarks that highlight the scalability of LegionFS. LegionFS aggregate throughput follows the linear growth of the network, yielding an aggregate read bandwidth of 193.8 MB/s on a 100 Mbps Ethernet backplane with 50 simultaneous readers. The serverless architecture of LegionFS is shown to benefit important scientific applications, such as those accessing the Protein Data Bank, within both local- and wide-area environments.","PeriodicalId":325282,"journal":{"name":"ACM/IEEE SC 2001 Conference (SC'01)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"LegionFS: A Secure and Scalable File System Supporting Cross-Domain High-Performance Applications\",\"authors\":\"B. White, M. Walker, M. Humphrey, A. Grimshaw\",\"doi\":\"10.1145/582034.582093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Realizing that current file systems can not cope with the diverse requirements of wide-area collaborations, researchers have developed data access facilities to meet their needs. Recent work has focused on comprehensive data access architectures. In order to fulfill the evolving requirements in this environment, we suggest a more fully-integrated architecture built upon the fundamental tenets of naming, security, scalability, extensibility, and adaptability. These form the underpinning of the Legion File System (LegionFS). This paper motivates the need for these requirements and presents benchmarks that highlight the scalability of LegionFS. LegionFS aggregate throughput follows the linear growth of the network, yielding an aggregate read bandwidth of 193.8 MB/s on a 100 Mbps Ethernet backplane with 50 simultaneous readers. The serverless architecture of LegionFS is shown to benefit important scientific applications, such as those accessing the Protein Data Bank, within both local- and wide-area environments.\",\"PeriodicalId\":325282,\"journal\":{\"name\":\"ACM/IEEE SC 2001 Conference (SC'01)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2001 Conference (SC'01)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/582034.582093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2001 Conference (SC'01)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/582034.582093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LegionFS: A Secure and Scalable File System Supporting Cross-Domain High-Performance Applications
Realizing that current file systems can not cope with the diverse requirements of wide-area collaborations, researchers have developed data access facilities to meet their needs. Recent work has focused on comprehensive data access architectures. In order to fulfill the evolving requirements in this environment, we suggest a more fully-integrated architecture built upon the fundamental tenets of naming, security, scalability, extensibility, and adaptability. These form the underpinning of the Legion File System (LegionFS). This paper motivates the need for these requirements and presents benchmarks that highlight the scalability of LegionFS. LegionFS aggregate throughput follows the linear growth of the network, yielding an aggregate read bandwidth of 193.8 MB/s on a 100 Mbps Ethernet backplane with 50 simultaneous readers. The serverless architecture of LegionFS is shown to benefit important scientific applications, such as those accessing the Protein Data Bank, within both local- and wide-area environments.