{"title":"多核系统的并行k-桁架分解","authors":"H. Kabir, Kamesh Madduri","doi":"10.1109/HPEC.2017.8091052","DOIUrl":null,"url":null,"abstract":"We discuss our submission to the HPEC 2017 Static Graph Challenge on k-truss decomposition and triangle counting. Our results use an algorithm called PKT (Parallel k-truss) designed for multicore systems. We are able to process almost all Graph Challenge datasets in under a minute on a 24-core server with 128 GB memory. For a synthetic Graph500 graph with 17 million vertices and 523 million edges, triangle counting takes 16 seconds and truss decomposition takes 29 minutes on the 24-core server.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Parallel k-truss decomposition on multicore systems\",\"authors\":\"H. Kabir, Kamesh Madduri\",\"doi\":\"10.1109/HPEC.2017.8091052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss our submission to the HPEC 2017 Static Graph Challenge on k-truss decomposition and triangle counting. Our results use an algorithm called PKT (Parallel k-truss) designed for multicore systems. We are able to process almost all Graph Challenge datasets in under a minute on a 24-core server with 128 GB memory. For a synthetic Graph500 graph with 17 million vertices and 523 million edges, triangle counting takes 16 seconds and truss decomposition takes 29 minutes on the 24-core server.\",\"PeriodicalId\":364903,\"journal\":{\"name\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2017.8091052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel k-truss decomposition on multicore systems
We discuss our submission to the HPEC 2017 Static Graph Challenge on k-truss decomposition and triangle counting. Our results use an algorithm called PKT (Parallel k-truss) designed for multicore systems. We are able to process almost all Graph Challenge datasets in under a minute on a 24-core server with 128 GB memory. For a synthetic Graph500 graph with 17 million vertices and 523 million edges, triangle counting takes 16 seconds and truss decomposition takes 29 minutes on the 24-core server.