{"title":"基于libuv的高性能多核IO管理器(经验报告)","authors":"D. Han, Tao He","doi":"10.1145/3242744.3242759","DOIUrl":null,"url":null,"abstract":"We present a high performance multicore I/O manager based on libuv for Glasgow Haskell Compiler (GHC). The new I/O manager is packaged as an ordinary Haskell package rather than baked into GHC's runtime system(GHC RTS), yet takes advantage of GHC RTS's comprehensive concurrent support, such as lightweight threads and safe/unsafe FFI options. The new I/O manager's performance is comparable with existing implementation, with greater stability under high load. It also can be easily extended to support all of libuv's callback-based APIs, allowing us to write a complete high performance I/O toolkit without spending time on dealing with OS differences or low-level I/O system calls.","PeriodicalId":318201,"journal":{"name":"Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance multicore IO manager based on libuv (experience report)\",\"authors\":\"D. Han, Tao He\",\"doi\":\"10.1145/3242744.3242759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a high performance multicore I/O manager based on libuv for Glasgow Haskell Compiler (GHC). The new I/O manager is packaged as an ordinary Haskell package rather than baked into GHC's runtime system(GHC RTS), yet takes advantage of GHC RTS's comprehensive concurrent support, such as lightweight threads and safe/unsafe FFI options. The new I/O manager's performance is comparable with existing implementation, with greater stability under high load. It also can be easily extended to support all of libuv's callback-based APIs, allowing us to write a complete high performance I/O toolkit without spending time on dealing with OS differences or low-level I/O system calls.\",\"PeriodicalId\":318201,\"journal\":{\"name\":\"Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3242744.3242759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242744.3242759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A high-performance multicore IO manager based on libuv (experience report)
We present a high performance multicore I/O manager based on libuv for Glasgow Haskell Compiler (GHC). The new I/O manager is packaged as an ordinary Haskell package rather than baked into GHC's runtime system(GHC RTS), yet takes advantage of GHC RTS's comprehensive concurrent support, such as lightweight threads and safe/unsafe FFI options. The new I/O manager's performance is comparable with existing implementation, with greater stability under high load. It also can be easily extended to support all of libuv's callback-based APIs, allowing us to write a complete high performance I/O toolkit without spending time on dealing with OS differences or low-level I/O system calls.