无监督序列处理的联想记忆模型

S. Pantazi, J. Moehr
{"title":"无监督序列处理的联想记忆模型","authors":"S. Pantazi, J. Moehr","doi":"10.1109/PACRIM.2005.1517268","DOIUrl":null,"url":null,"abstract":"We introduce the design principles and present formally the building block of an associative memory model capable of unsupervised sequence processing: the constrained partially ordered set. We then use the model in a series of experiments, presented in increasing order of complexity and conclude that it demonstrates interesting information processing capabilities which warrant future development.","PeriodicalId":346880,"journal":{"name":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An associative memory model for unsupervised sequence processing\",\"authors\":\"S. Pantazi, J. Moehr\",\"doi\":\"10.1109/PACRIM.2005.1517268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the design principles and present formally the building block of an associative memory model capable of unsupervised sequence processing: the constrained partially ordered set. We then use the model in a series of experiments, presented in increasing order of complexity and conclude that it demonstrates interesting information processing capabilities which warrant future development.\",\"PeriodicalId\":346880,\"journal\":{\"name\":\"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2005.1517268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2005.1517268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们介绍了设计原则,并正式提出了一种能够进行无监督序列处理的联想记忆模型的构建块:约束部分有序集。然后,我们在一系列实验中使用该模型,以增加复杂性的顺序呈现,并得出结论,它展示了有趣的信息处理能力,保证了未来的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An associative memory model for unsupervised sequence processing
We introduce the design principles and present formally the building block of an associative memory model capable of unsupervised sequence processing: the constrained partially ordered set. We then use the model in a series of experiments, presented in increasing order of complexity and conclude that it demonstrates interesting information processing capabilities which warrant future development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信