由环保能源供应的智能电网专用转换器的系统生成

A. Ioinovici
{"title":"由环保能源供应的智能电网专用转换器的系统生成","authors":"A. Ioinovici","doi":"10.1109/PESA.2017.8277745","DOIUrl":null,"url":null,"abstract":"After clarifying some misunderstandings about the switched-capacitor converters and discussing the shortcomings of this type of converters if used in conjunction with the green sources of energy, a group of step-up switched-capacitor-inductor cells will be presented. They have been developed in order to be inserted in basic converters with current source type of input in order to get a large dc gain, non-pulsating input current, low components count, and high energy processing efficiency. It will be shown that almost all the available large dc gain converters have the same geometric structure. Starting from such a graph, a systematic procedure for synthesizing new converters will be shown. It permits not only to rediscover the available structures, but to find new converters suitable to be used in smart grids supplied by green sources of energy. Criteria for comparing different converters in order to find the best ones in such applications and ways for generalizing the converters for getting ultra-high dc gains, with different performances will be explained.","PeriodicalId":223569,"journal":{"name":"2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA)","volume":"55 100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic generation of smart grid-purposed converters supplied by environmental-friendly sources of energy\",\"authors\":\"A. Ioinovici\",\"doi\":\"10.1109/PESA.2017.8277745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After clarifying some misunderstandings about the switched-capacitor converters and discussing the shortcomings of this type of converters if used in conjunction with the green sources of energy, a group of step-up switched-capacitor-inductor cells will be presented. They have been developed in order to be inserted in basic converters with current source type of input in order to get a large dc gain, non-pulsating input current, low components count, and high energy processing efficiency. It will be shown that almost all the available large dc gain converters have the same geometric structure. Starting from such a graph, a systematic procedure for synthesizing new converters will be shown. It permits not only to rediscover the available structures, but to find new converters suitable to be used in smart grids supplied by green sources of energy. Criteria for comparing different converters in order to find the best ones in such applications and ways for generalizing the converters for getting ultra-high dc gains, with different performances will be explained.\",\"PeriodicalId\":223569,\"journal\":{\"name\":\"2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA)\",\"volume\":\"55 100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESA.2017.8277745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESA.2017.8277745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在澄清了关于开关电容器变换器的一些误解,并讨论了这种类型的变换器如果与绿色能源结合使用的缺点之后,将提出一组升压开关电容器电感电池。为了获得大的直流增益、无脉动输入电流、低分量计数和高能量处理效率,它们被开发用于具有电流源型输入的基本变换器中。结果表明,几乎所有可用的大直流增益变换器都具有相同的几何结构。从这样一个图开始,将显示一个合成新转换器的系统程序。它不仅可以重新发现可用的结构,而且可以找到适合用于绿色能源提供的智能电网的新转换器。将解释比较不同转换器的标准,以便在此类应用中找到最佳转换器,以及推广转换器以获得不同性能的超高直流增益的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic generation of smart grid-purposed converters supplied by environmental-friendly sources of energy
After clarifying some misunderstandings about the switched-capacitor converters and discussing the shortcomings of this type of converters if used in conjunction with the green sources of energy, a group of step-up switched-capacitor-inductor cells will be presented. They have been developed in order to be inserted in basic converters with current source type of input in order to get a large dc gain, non-pulsating input current, low components count, and high energy processing efficiency. It will be shown that almost all the available large dc gain converters have the same geometric structure. Starting from such a graph, a systematic procedure for synthesizing new converters will be shown. It permits not only to rediscover the available structures, but to find new converters suitable to be used in smart grids supplied by green sources of energy. Criteria for comparing different converters in order to find the best ones in such applications and ways for generalizing the converters for getting ultra-high dc gains, with different performances will be explained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信