基于强化学习的认知无线网络多通道非持久CSMA MAC方案

Yi Tang, D. Grace, T. Clarke, Jibo Wei
{"title":"基于强化学习的认知无线网络多通道非持久CSMA MAC方案","authors":"Yi Tang, D. Grace, T. Clarke, Jibo Wei","doi":"10.1109/ISCIT.2011.6092159","DOIUrl":null,"url":null,"abstract":"This paper presents two multichannel non-persistent CSMA (M-np-CSMA) MAC schemes using Simple Reinforcement Learning and State-Action-Reward-State-Action (SARSA) learning respectively for distributed cognitive radio networks. The two learning schemes both use reinforcement learning to help the users learn the environment and historical transmissions. Compared with M-np-CSMA MAC protocol with random channel choice, the learning schemes can help the cognitive users choose the best channels which offer more spectrum access opportunities to sense and access. The results show that both learning schemes can effectively improve the throughput and decrease the packet delay at heavy traffic loads and with a large number of cognitive users. The Simple Reinforcement Learning scheme and SARSA scheme can achieves a 15% and 25% improvement in the maximum throughput respectively, compared with the M-np-CSMA without learning.","PeriodicalId":226552,"journal":{"name":"2011 11th International Symposium on Communications & Information Technologies (ISCIT)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multichannel non-persistent CSMA MAC schemes with reinforcement learning for cognitive radio networks\",\"authors\":\"Yi Tang, D. Grace, T. Clarke, Jibo Wei\",\"doi\":\"10.1109/ISCIT.2011.6092159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two multichannel non-persistent CSMA (M-np-CSMA) MAC schemes using Simple Reinforcement Learning and State-Action-Reward-State-Action (SARSA) learning respectively for distributed cognitive radio networks. The two learning schemes both use reinforcement learning to help the users learn the environment and historical transmissions. Compared with M-np-CSMA MAC protocol with random channel choice, the learning schemes can help the cognitive users choose the best channels which offer more spectrum access opportunities to sense and access. The results show that both learning schemes can effectively improve the throughput and decrease the packet delay at heavy traffic loads and with a large number of cognitive users. The Simple Reinforcement Learning scheme and SARSA scheme can achieves a 15% and 25% improvement in the maximum throughput respectively, compared with the M-np-CSMA without learning.\",\"PeriodicalId\":226552,\"journal\":{\"name\":\"2011 11th International Symposium on Communications & Information Technologies (ISCIT)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 11th International Symposium on Communications & Information Technologies (ISCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCIT.2011.6092159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Symposium on Communications & Information Technologies (ISCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2011.6092159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对分布式认知无线网络,提出了两种分别采用简单强化学习和状态-动作-奖励-状态-动作(SARSA)学习的多通道非持久性CSMA (M-np-CSMA) MAC方案。这两种学习方案都使用强化学习来帮助用户学习环境和历史传输。与随机选择信道的M-np-CSMA MAC协议相比,该学习方案可以帮助认知用户选择最佳信道,从而为感知和接入提供更多的频谱访问机会。结果表明,在大流量负载和认知用户数量较大的情况下,两种学习方案都能有效地提高吞吐量,降低数据包延迟。与没有学习的M-np-CSMA相比,Simple Reinforcement Learning方案和SARSA方案的最大吞吐量分别提高了15%和25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multichannel non-persistent CSMA MAC schemes with reinforcement learning for cognitive radio networks
This paper presents two multichannel non-persistent CSMA (M-np-CSMA) MAC schemes using Simple Reinforcement Learning and State-Action-Reward-State-Action (SARSA) learning respectively for distributed cognitive radio networks. The two learning schemes both use reinforcement learning to help the users learn the environment and historical transmissions. Compared with M-np-CSMA MAC protocol with random channel choice, the learning schemes can help the cognitive users choose the best channels which offer more spectrum access opportunities to sense and access. The results show that both learning schemes can effectively improve the throughput and decrease the packet delay at heavy traffic loads and with a large number of cognitive users. The Simple Reinforcement Learning scheme and SARSA scheme can achieves a 15% and 25% improvement in the maximum throughput respectively, compared with the M-np-CSMA without learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信