基于机器学习的系统电磁环境异常检测方法

Zhang Weisha, Sun Jinguang, L. Jiazhong
{"title":"基于机器学习的系统电磁环境异常检测方法","authors":"Zhang Weisha, Sun Jinguang, L. Jiazhong","doi":"10.1109/ICSGEA.2018.00036","DOIUrl":null,"url":null,"abstract":"Abnormal electromagnetic signals refer to the insertion of a malicious module in hardware. When a malicious module exchanges information through the self-built channel and the outside world, it has the authority to access all hardware devices, and the threat is huge. In order to effectively identify abnormal electromagnetic signals, we have combined the big data platform technology and machine learning classification technology to propose anomaly detection of electromagnetic signals at the physical layer to find malicious anomalous electromagnetic signals in the hardware. The results show that our method can detect abnormal electromagnetic signals very well, and can reach 98% in the recognition rate of abnormal electromagnetic signals. It has considerable reference value for electromagnetic signal monitoring and network anomaly detection.","PeriodicalId":445324,"journal":{"name":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning-Based System Electromagnetic Environment Anomaly Detection Method\",\"authors\":\"Zhang Weisha, Sun Jinguang, L. Jiazhong\",\"doi\":\"10.1109/ICSGEA.2018.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abnormal electromagnetic signals refer to the insertion of a malicious module in hardware. When a malicious module exchanges information through the self-built channel and the outside world, it has the authority to access all hardware devices, and the threat is huge. In order to effectively identify abnormal electromagnetic signals, we have combined the big data platform technology and machine learning classification technology to propose anomaly detection of electromagnetic signals at the physical layer to find malicious anomalous electromagnetic signals in the hardware. The results show that our method can detect abnormal electromagnetic signals very well, and can reach 98% in the recognition rate of abnormal electromagnetic signals. It has considerable reference value for electromagnetic signal monitoring and network anomaly detection.\",\"PeriodicalId\":445324,\"journal\":{\"name\":\"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSGEA.2018.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGEA.2018.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电磁信号异常是指硬件中插入了恶意模块。当恶意模块通过自建通道与外界交换信息时,就具有了访问所有硬件设备的权限,威胁是巨大的。为了有效识别异常电磁信号,我们结合大数据平台技术和机器学习分类技术,提出了物理层电磁信号异常检测,在硬件中发现恶意异常电磁信号。结果表明,该方法能很好地检测出异常电磁信号,对异常电磁信号的识别率可达98%。对电磁信号监测和网络异常检测具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based System Electromagnetic Environment Anomaly Detection Method
Abnormal electromagnetic signals refer to the insertion of a malicious module in hardware. When a malicious module exchanges information through the self-built channel and the outside world, it has the authority to access all hardware devices, and the threat is huge. In order to effectively identify abnormal electromagnetic signals, we have combined the big data platform technology and machine learning classification technology to propose anomaly detection of electromagnetic signals at the physical layer to find malicious anomalous electromagnetic signals in the hardware. The results show that our method can detect abnormal electromagnetic signals very well, and can reach 98% in the recognition rate of abnormal electromagnetic signals. It has considerable reference value for electromagnetic signal monitoring and network anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信