快速和紧凑的精确距离Oracle为平面图形

Vincent Cohen-Addad, Søren Dahlgaard, Christian Wulff-Nilsen
{"title":"快速和紧凑的精确距离Oracle为平面图形","authors":"Vincent Cohen-Addad, Søren Dahlgaard, Christian Wulff-Nilsen","doi":"10.1109/FOCS.2017.93","DOIUrl":null,"url":null,"abstract":"For a given a graph, a distance oracle is a data structure that answers distance queries between pairs of vertices. We introduce an O(n 5/3)-space distance oracle which answers exact distance queries in O(log n) time for n-vertex planar edge-weighted digraphs. All previous distance oracles for planar graphs with truly subquadratic space (i.e., space O(n 2- ) for some constant 0) either required query time polynomial in n or could only answer approximate distance queries.Furthermore, we show how to trade-off time and space: for any S ≥ n 3/2, we show how to obtain an S-space distance 5/2 oracle that answers queries in time O(S n 3/2 log n). This is a polynomial improvement over the previous planar distance oracles with o(n 1/4) query time.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Fast and Compact Exact Distance Oracle for Planar Graphs\",\"authors\":\"Vincent Cohen-Addad, Søren Dahlgaard, Christian Wulff-Nilsen\",\"doi\":\"10.1109/FOCS.2017.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a given a graph, a distance oracle is a data structure that answers distance queries between pairs of vertices. We introduce an O(n 5/3)-space distance oracle which answers exact distance queries in O(log n) time for n-vertex planar edge-weighted digraphs. All previous distance oracles for planar graphs with truly subquadratic space (i.e., space O(n 2- ) for some constant 0) either required query time polynomial in n or could only answer approximate distance queries.Furthermore, we show how to trade-off time and space: for any S ≥ n 3/2, we show how to obtain an S-space distance 5/2 oracle that answers queries in time O(S n 3/2 log n). This is a polynomial improvement over the previous planar distance oracles with o(n 1/4) query time.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

对于给定的图,距离oracle是一种数据结构,用于回答顶点对之间的距离查询。我们引入了一个O(n 5/3)空间距离oracle,它可以在O(log n)时间内回答n顶点平面边加权有向图的精确距离查询。所有以前的距离预言对于真正的次二次空间的平面图(例如,对于某个常数0的空间O(n 2-)),要么需要n的查询时间多项式,要么只能回答近似距离查询。此外,我们展示了如何权衡时间和空间:对于任何S ≥在n 3/2中,我们展示了如何获得一个S-空间距离5/2的oracle,它在O(ns 3/2 log n)时间内回答查询。这是一个多项式改进,比以前的平面距离oracle查询时间为O(n 1/4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Compact Exact Distance Oracle for Planar Graphs
For a given a graph, a distance oracle is a data structure that answers distance queries between pairs of vertices. We introduce an O(n 5/3)-space distance oracle which answers exact distance queries in O(log n) time for n-vertex planar edge-weighted digraphs. All previous distance oracles for planar graphs with truly subquadratic space (i.e., space O(n 2- ) for some constant 0) either required query time polynomial in n or could only answer approximate distance queries.Furthermore, we show how to trade-off time and space: for any S ≥ n 3/2, we show how to obtain an S-space distance 5/2 oracle that answers queries in time O(S n 3/2 log n). This is a polynomial improvement over the previous planar distance oracles with o(n 1/4) query time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信