基于K-means的MongoDB聚类实时歌曲识别

Murtadha Arif Bin Sahbudin, M. Scarpa, Salvatore Serrano
{"title":"基于K-means的MongoDB聚类实时歌曲识别","authors":"Murtadha Arif Bin Sahbudin, M. Scarpa, Salvatore Serrano","doi":"10.1109/ICCNC.2019.8685489","DOIUrl":null,"url":null,"abstract":"Recently, the increased competition in song recognition has led to the necessity to identify songs within very huge databases compared to previous years. Therefore, information retrieval technique requires a more efficient and scalable data storage framework. In this work, we propose an approach exploiting K-means clustering and describe strategies for improving accuracy and speed. In collaboration with an audio expert company providing us with 2.4 billion fingerprints data, we evaluated the performance of the proposed clustering and recognition algorithm.","PeriodicalId":161815,"journal":{"name":"2019 International Conference on Computing, Networking and Communications (ICNC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"MongoDB Clustering using K-means for Real-Time Song Recognition\",\"authors\":\"Murtadha Arif Bin Sahbudin, M. Scarpa, Salvatore Serrano\",\"doi\":\"10.1109/ICCNC.2019.8685489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the increased competition in song recognition has led to the necessity to identify songs within very huge databases compared to previous years. Therefore, information retrieval technique requires a more efficient and scalable data storage framework. In this work, we propose an approach exploiting K-means clustering and describe strategies for improving accuracy and speed. In collaboration with an audio expert company providing us with 2.4 billion fingerprints data, we evaluated the performance of the proposed clustering and recognition algorithm.\",\"PeriodicalId\":161815,\"journal\":{\"name\":\"2019 International Conference on Computing, Networking and Communications (ICNC)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computing, Networking and Communications (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCNC.2019.8685489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2019.8685489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

最近,与前几年相比,歌曲识别领域的竞争日益激烈,导致需要在非常庞大的数据库中识别歌曲。因此,信息检索技术需要一个更高效、可扩展的数据存储框架。在这项工作中,我们提出了一种利用k均值聚类的方法,并描述了提高准确性和速度的策略。我们与一家音频专家公司合作,为我们提供了24亿个指纹数据,我们评估了所提出的聚类和识别算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MongoDB Clustering using K-means for Real-Time Song Recognition
Recently, the increased competition in song recognition has led to the necessity to identify songs within very huge databases compared to previous years. Therefore, information retrieval technique requires a more efficient and scalable data storage framework. In this work, we propose an approach exploiting K-means clustering and describe strategies for improving accuracy and speed. In collaboration with an audio expert company providing us with 2.4 billion fingerprints data, we evaluated the performance of the proposed clustering and recognition algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信