L. Cunha, S. Dantas, T. Gagie, Roland Wittler, L. Kowada, J. Stoye
{"title":"快速和简单的二进制运行长度编码字符串的混乱索引","authors":"L. Cunha, S. Dantas, T. Gagie, Roland Wittler, L. Kowada, J. Stoye","doi":"10.4230/LIPIcs.CPM.2017.19","DOIUrl":null,"url":null,"abstract":"Important papers have appeared recently on the problem of indexing binary strings for jumbled pattern matching, and further lowering the time bounds in terms of the input size would now be a breakthrough with broad implications. We can still make progress on the problem, however, by considering other natural parameters. Badkobeh et al. (IPL, 2013) and Amir et al. (TCS, 2016) gave algorithms that index a binary string in O(n + r^2 log r) time, where n is the length and r is the number of runs, and Giaquinta and Grabowski (IPL, 2013) gave one that runs in O(n + r^2) time. In this paper we propose a new and very simple algorithm that also runs in O(n + r^2) time and can be extended either so that the index returns the position of a match (if there is one), or so that the algorithm uses only O(n) bits of space instead of O(n) words.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast and Simple Jumbled Indexing for Binary Run-Length Encoded Strings\",\"authors\":\"L. Cunha, S. Dantas, T. Gagie, Roland Wittler, L. Kowada, J. Stoye\",\"doi\":\"10.4230/LIPIcs.CPM.2017.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Important papers have appeared recently on the problem of indexing binary strings for jumbled pattern matching, and further lowering the time bounds in terms of the input size would now be a breakthrough with broad implications. We can still make progress on the problem, however, by considering other natural parameters. Badkobeh et al. (IPL, 2013) and Amir et al. (TCS, 2016) gave algorithms that index a binary string in O(n + r^2 log r) time, where n is the length and r is the number of runs, and Giaquinta and Grabowski (IPL, 2013) gave one that runs in O(n + r^2) time. In this paper we propose a new and very simple algorithm that also runs in O(n + r^2) time and can be extended either so that the index returns the position of a match (if there is one), or so that the algorithm uses only O(n) bits of space instead of O(n) words.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2017.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2017.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast and Simple Jumbled Indexing for Binary Run-Length Encoded Strings
Important papers have appeared recently on the problem of indexing binary strings for jumbled pattern matching, and further lowering the time bounds in terms of the input size would now be a breakthrough with broad implications. We can still make progress on the problem, however, by considering other natural parameters. Badkobeh et al. (IPL, 2013) and Amir et al. (TCS, 2016) gave algorithms that index a binary string in O(n + r^2 log r) time, where n is the length and r is the number of runs, and Giaquinta and Grabowski (IPL, 2013) gave one that runs in O(n + r^2) time. In this paper we propose a new and very simple algorithm that also runs in O(n + r^2) time and can be extended either so that the index returns the position of a match (if there is one), or so that the algorithm uses only O(n) bits of space instead of O(n) words.