快速和简单的二进制运行长度编码字符串的混乱索引

L. Cunha, S. Dantas, T. Gagie, Roland Wittler, L. Kowada, J. Stoye
{"title":"快速和简单的二进制运行长度编码字符串的混乱索引","authors":"L. Cunha, S. Dantas, T. Gagie, Roland Wittler, L. Kowada, J. Stoye","doi":"10.4230/LIPIcs.CPM.2017.19","DOIUrl":null,"url":null,"abstract":"Important papers have appeared recently on the problem of indexing binary strings for jumbled pattern matching, and further lowering the time bounds in terms of the input size would now be a breakthrough with broad implications. We can still make progress on the problem, however, by considering other natural parameters. Badkobeh et al. (IPL, 2013) and Amir et al. (TCS, 2016) gave algorithms that index a binary string in O(n + r^2 log r) time, where n is the length and r is the number of runs, and Giaquinta and Grabowski (IPL, 2013) gave one that runs in O(n + r^2) time. In this paper we propose a new and very simple algorithm that also runs in O(n + r^2) time and can be extended either so that the index returns the position of a match (if there is one), or so that the algorithm uses only O(n) bits of space instead of O(n) words.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast and Simple Jumbled Indexing for Binary Run-Length Encoded Strings\",\"authors\":\"L. Cunha, S. Dantas, T. Gagie, Roland Wittler, L. Kowada, J. Stoye\",\"doi\":\"10.4230/LIPIcs.CPM.2017.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Important papers have appeared recently on the problem of indexing binary strings for jumbled pattern matching, and further lowering the time bounds in terms of the input size would now be a breakthrough with broad implications. We can still make progress on the problem, however, by considering other natural parameters. Badkobeh et al. (IPL, 2013) and Amir et al. (TCS, 2016) gave algorithms that index a binary string in O(n + r^2 log r) time, where n is the length and r is the number of runs, and Giaquinta and Grabowski (IPL, 2013) gave one that runs in O(n + r^2) time. In this paper we propose a new and very simple algorithm that also runs in O(n + r^2) time and can be extended either so that the index returns the position of a match (if there is one), or so that the algorithm uses only O(n) bits of space instead of O(n) words.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2017.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2017.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近出现了一些重要的论文,讨论了为混乱模式匹配索引二进制字符串的问题,进一步降低输入大小的时间限制现在将是一个具有广泛意义的突破。然而,通过考虑其他自然参数,我们仍然可以在这个问题上取得进展。Badkobeh等人(IPL, 2013)和Amir等人(TCS, 2016)给出了在O(n + r^2 log r)时间内索引二进制字符串的算法,其中n是长度,r是运行次数,Giaquinta和Grabowski (IPL, 2013)给出了在O(n + r^2)时间内运行的算法。在本文中,我们提出了一个新的非常简单的算法,它也在O(n + r^2)时间内运行,并且可以扩展,以便索引返回匹配的位置(如果有的话),或者使算法只使用O(n)位空间而不是O(n)个单词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Simple Jumbled Indexing for Binary Run-Length Encoded Strings
Important papers have appeared recently on the problem of indexing binary strings for jumbled pattern matching, and further lowering the time bounds in terms of the input size would now be a breakthrough with broad implications. We can still make progress on the problem, however, by considering other natural parameters. Badkobeh et al. (IPL, 2013) and Amir et al. (TCS, 2016) gave algorithms that index a binary string in O(n + r^2 log r) time, where n is the length and r is the number of runs, and Giaquinta and Grabowski (IPL, 2013) gave one that runs in O(n + r^2) time. In this paper we propose a new and very simple algorithm that also runs in O(n + r^2) time and can be extended either so that the index returns the position of a match (if there is one), or so that the algorithm uses only O(n) bits of space instead of O(n) words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信