有两个以上星座的ARAIM

Y. Zhai, X. Zhan, Jin Chang, B. Pervan
{"title":"有两个以上星座的ARAIM","authors":"Y. Zhai, X. Zhan, Jin Chang, B. Pervan","doi":"10.33012/2019.16849","DOIUrl":null,"url":null,"abstract":"Future Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is expected to bring significant global navigation performance improvement to civil aviation. Currently, the ARAIM research activities are led by a joint working group of the United States (U.S.) and the European Union (E.U.), which focuses on dual-constellation scenario using the Global Positioning System (GPS) and Galileo. However, even though the BeiDou System (BDS) and GLONASS had achieved remarkable developments in recent years, there had been no comprehensive exploration on their potential benefits to ARAIM. In response, this paper investigates the achievable ARAIM service capability and robustness using more than two full Global Navigation Satellite Systems (GNSS) constellations. Moreover, the key issues with the current baseline ARAIM user algorithm under the new operational scenarios are identified. It is shown that due to the exponentially increased number of monitored satellite subsets, the computational load can be significantly increased when additional constellations are employed. To mitigate this impact, an efficient Fault Detection and Exclusion (FDE) algorithm is rigorously developed by grouping multiple fault hypotheses. To accommodate the non-equal performance levels among the constellations, a series of sensitivity analyses are carried out using variable Integrity Support Message (ISM) values, and the results are presented in terms of availability.","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"ARAIM with More than two Constellations\",\"authors\":\"Y. Zhai, X. Zhan, Jin Chang, B. Pervan\",\"doi\":\"10.33012/2019.16849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is expected to bring significant global navigation performance improvement to civil aviation. Currently, the ARAIM research activities are led by a joint working group of the United States (U.S.) and the European Union (E.U.), which focuses on dual-constellation scenario using the Global Positioning System (GPS) and Galileo. However, even though the BeiDou System (BDS) and GLONASS had achieved remarkable developments in recent years, there had been no comprehensive exploration on their potential benefits to ARAIM. In response, this paper investigates the achievable ARAIM service capability and robustness using more than two full Global Navigation Satellite Systems (GNSS) constellations. Moreover, the key issues with the current baseline ARAIM user algorithm under the new operational scenarios are identified. It is shown that due to the exponentially increased number of monitored satellite subsets, the computational load can be significantly increased when additional constellations are employed. To mitigate this impact, an efficient Fault Detection and Exclusion (FDE) algorithm is rigorously developed by grouping multiple fault hypotheses. To accommodate the non-equal performance levels among the constellations, a series of sensitivity analyses are carried out using variable Integrity Support Message (ISM) values, and the results are presented in terms of availability.\",\"PeriodicalId\":201935,\"journal\":{\"name\":\"Proceedings of the ION 2019 Pacific PNT Meeting\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ION 2019 Pacific PNT Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33012/2019.16849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ION 2019 Pacific PNT Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/2019.16849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

未来先进接收机自主完整性监测(ARAIM)有望为民用航空带来显著的全球导航性能改善。目前,ARAIM的研究活动由美国和欧盟的联合工作组领导,重点研究使用全球定位系统(GPS)和伽利略的双星座方案。然而,尽管近年来北斗系统和格洛纳斯系统取得了显著的发展,但对其对ARAIM的潜在好处尚未进行全面的探索。为此,本文研究了使用两个以上完整的全球导航卫星系统(GNSS)星座可实现的ARAIM服务能力和鲁棒性。此外,还指出了新作战情景下当前基线ARAIM用户算法存在的关键问题。结果表明,由于监测卫星子集的数量呈指数增长,当采用额外的星座时,计算负荷会显著增加。为了减轻这种影响,通过对多个故障假设进行分组,严格开发了一种高效的故障检测和排除(FDE)算法。为了适应星座之间不平等的性能水平,使用不同的完整性支持信息(ISM)值进行了一系列敏感性分析,并根据可用性给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARAIM with More than two Constellations
Future Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is expected to bring significant global navigation performance improvement to civil aviation. Currently, the ARAIM research activities are led by a joint working group of the United States (U.S.) and the European Union (E.U.), which focuses on dual-constellation scenario using the Global Positioning System (GPS) and Galileo. However, even though the BeiDou System (BDS) and GLONASS had achieved remarkable developments in recent years, there had been no comprehensive exploration on their potential benefits to ARAIM. In response, this paper investigates the achievable ARAIM service capability and robustness using more than two full Global Navigation Satellite Systems (GNSS) constellations. Moreover, the key issues with the current baseline ARAIM user algorithm under the new operational scenarios are identified. It is shown that due to the exponentially increased number of monitored satellite subsets, the computational load can be significantly increased when additional constellations are employed. To mitigate this impact, an efficient Fault Detection and Exclusion (FDE) algorithm is rigorously developed by grouping multiple fault hypotheses. To accommodate the non-equal performance levels among the constellations, a series of sensitivity analyses are carried out using variable Integrity Support Message (ISM) values, and the results are presented in terms of availability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信