一种新的肿瘤分割活动轮廓模型

Maryam Taghizadeh Dehkordi
{"title":"一种新的肿瘤分割活动轮廓模型","authors":"Maryam Taghizadeh Dehkordi","doi":"10.1109/PRIA.2017.7983053","DOIUrl":null,"url":null,"abstract":"In this paper, a new energy function has been proposed for tumor segmentation implemented by the level set method. Multi-scale Gaussian filter is applied to the image and its output determines the probability of each pixel belonging to the tumor structure. Introducing the output into the energy function makes the model robust against the inhomogeneous background. Experimental results from MRI verify the desirable performance of the proposed model in comparison with other methods.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new active contour model for tumor segmentation\",\"authors\":\"Maryam Taghizadeh Dehkordi\",\"doi\":\"10.1109/PRIA.2017.7983053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new energy function has been proposed for tumor segmentation implemented by the level set method. Multi-scale Gaussian filter is applied to the image and its output determines the probability of each pixel belonging to the tumor structure. Introducing the output into the energy function makes the model robust against the inhomogeneous background. Experimental results from MRI verify the desirable performance of the proposed model in comparison with other methods.\",\"PeriodicalId\":336066,\"journal\":{\"name\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIA.2017.7983053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的能量函数用于水平集算法的肿瘤分割。对图像进行多尺度高斯滤波,其输出决定了每个像素属于肿瘤结构的概率。将输出引入能量函数使模型在非均匀背景下具有鲁棒性。与其他方法相比,MRI实验结果验证了该模型的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new active contour model for tumor segmentation
In this paper, a new energy function has been proposed for tumor segmentation implemented by the level set method. Multi-scale Gaussian filter is applied to the image and its output determines the probability of each pixel belonging to the tumor structure. Introducing the output into the energy function makes the model robust against the inhomogeneous background. Experimental results from MRI verify the desirable performance of the proposed model in comparison with other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信