自适应时间窗口大小跟踪概念漂移

M. S. Mouchaweh, J. Zaytoon, P. Billaudel
{"title":"自适应时间窗口大小跟踪概念漂移","authors":"M. S. Mouchaweh, J. Zaytoon, P. Billaudel","doi":"10.1109/ICMLA.2011.26","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach to track concept drift in order to improve the classifier performance. This approach uses an adaptive time window size in order to detect a drift according to its dynamics (slow/moderate/fast). The goal is to update the classifier using sufficient number of patterns related to environment changes. Since the classifier may misclassify drifted patterns with its old parameters, an expert is asked to provide the true class label for these patterns. This approach is used to detect at early stage a leak in the steam generator of nuclear power generators Prototype Fast Reactors.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Time Window Size to Track Concept Drift\",\"authors\":\"M. S. Mouchaweh, J. Zaytoon, P. Billaudel\",\"doi\":\"10.1109/ICMLA.2011.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an approach to track concept drift in order to improve the classifier performance. This approach uses an adaptive time window size in order to detect a drift according to its dynamics (slow/moderate/fast). The goal is to update the classifier using sufficient number of patterns related to environment changes. Since the classifier may misclassify drifted patterns with its old parameters, an expert is asked to provide the true class label for these patterns. This approach is used to detect at early stage a leak in the steam generator of nuclear power generators Prototype Fast Reactors.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高分类器的性能,本文提出了一种跟踪概念漂移的方法。这种方法使用自适应时间窗大小,以便根据其动态(慢/中/快)检测漂移。目标是使用与环境变化相关的足够数量的模式来更新分类器。由于分类器可能会对使用旧参数的漂移模式进行错误分类,因此需要专家为这些模式提供真实的类标签。该方法用于核电机组原型快堆蒸汽发生器泄漏的早期检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Time Window Size to Track Concept Drift
This paper proposes an approach to track concept drift in order to improve the classifier performance. This approach uses an adaptive time window size in order to detect a drift according to its dynamics (slow/moderate/fast). The goal is to update the classifier using sufficient number of patterns related to environment changes. Since the classifier may misclassify drifted patterns with its old parameters, an expert is asked to provide the true class label for these patterns. This approach is used to detect at early stage a leak in the steam generator of nuclear power generators Prototype Fast Reactors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信