比较时频分析方法在语音编码中的应用

S. Bousselmi, K. Ouni
{"title":"比较时频分析方法在语音编码中的应用","authors":"S. Bousselmi, K. Ouni","doi":"10.1109/SETIT.2016.7939908","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to compare the performance of two time-frequency decomposition in a context of speech coding. These decompositions are based on wavelet and wavelet frame theory. The main advantages of wavelet frame compared to wavelet are perfect reconstruction, resilience to quantization noise, nearly shift-invariant, symmetry and good time-frequency localization. The evaluation tests reveal that the quality of coded speech using the tight framelets packet transform outperform that of the wavelets packet transform.","PeriodicalId":426951,"journal":{"name":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The comparison of time-frequency analysis methods for speech coding application\",\"authors\":\"S. Bousselmi, K. Ouni\",\"doi\":\"10.1109/SETIT.2016.7939908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to compare the performance of two time-frequency decomposition in a context of speech coding. These decompositions are based on wavelet and wavelet frame theory. The main advantages of wavelet frame compared to wavelet are perfect reconstruction, resilience to quantization noise, nearly shift-invariant, symmetry and good time-frequency localization. The evaluation tests reveal that the quality of coded speech using the tight framelets packet transform outperform that of the wavelets packet transform.\",\"PeriodicalId\":426951,\"journal\":{\"name\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SETIT.2016.7939908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT.2016.7939908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是比较两种时频分解在语音编码中的性能。这些分解是基于小波和小波框架理论。与小波相比,小波帧的主要优点是重构效果好、对量化噪声的恢复能力强、位移不变性强、对称性好、时频局部化好。测试结果表明,紧凑小帧包变换的语音编码质量优于小波包变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The comparison of time-frequency analysis methods for speech coding application
The goal of this paper is to compare the performance of two time-frequency decomposition in a context of speech coding. These decompositions are based on wavelet and wavelet frame theory. The main advantages of wavelet frame compared to wavelet are perfect reconstruction, resilience to quantization noise, nearly shift-invariant, symmetry and good time-frequency localization. The evaluation tests reveal that the quality of coded speech using the tight framelets packet transform outperform that of the wavelets packet transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信