Fabian Kreß, Julian Höfer, Tim Hotfilter, Iris Walter, V. Sidorenko, T. Harbaum, J. Becker
{"title":"嵌入式人工智能应用中卷积神经网络推理的硬件感知划分","authors":"Fabian Kreß, Julian Höfer, Tim Hotfilter, Iris Walter, V. Sidorenko, T. Harbaum, J. Becker","doi":"10.1109/DCOSS54816.2022.00034","DOIUrl":null,"url":null,"abstract":"Embedded image processing applications like multicamera-based object detection or semantic segmentation are often based on Convolutional Neural Networks (CNNs) to provide precise and reliable results. The deployment of CNNs in embedded systems, however, imposes additional constraints such as latency restrictions and limited energy consumption in the sensor platform. These requirements have to be considered during hardware/software co-design of embedded Artifical Intelligence (AI) applications. In addition, the transmission of uncompressed image data from the sensor to a central edge node requires large bandwidth on the link, which must also be taken into account during the design phase.Therefore, we present a simulation toolchain for fast evaluation of hardware-aware CNN partitioning for embedded AI applications. This approach explores an efficient workload distribution between sensor nodes and a central edge node. Neither processing all layers close to the sensor nor transmitting all uncompressed raw data to the edge node is an optimal solution for each use case. Hence, our proposed simulation toolchain evaluates power and performance metrics for each reasonable partitioning point in a CNN. In contrast to the state of the art, our approach does not only consider the neural network architecture. In the evaluation, our simulation toolchain additionally takes into account hardware components such as special accelerators and memories that are implemented in the sensor node.Exemplary, we show the simulation results for three commonly used CNNs in embedded systems. Thereby, we identify advantageous partitioning points regarding inference latency and energy consumption. With the support of the toolchain, we are able to identify three beneficial partitioning points for FCN ResNet-50 and two for GoogLeNet as well as for SqueezeNet V1.1.","PeriodicalId":300416,"journal":{"name":"2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hardware-aware Partitioning of Convolutional Neural Network Inference for Embedded AI Applications\",\"authors\":\"Fabian Kreß, Julian Höfer, Tim Hotfilter, Iris Walter, V. Sidorenko, T. Harbaum, J. Becker\",\"doi\":\"10.1109/DCOSS54816.2022.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded image processing applications like multicamera-based object detection or semantic segmentation are often based on Convolutional Neural Networks (CNNs) to provide precise and reliable results. The deployment of CNNs in embedded systems, however, imposes additional constraints such as latency restrictions and limited energy consumption in the sensor platform. These requirements have to be considered during hardware/software co-design of embedded Artifical Intelligence (AI) applications. In addition, the transmission of uncompressed image data from the sensor to a central edge node requires large bandwidth on the link, which must also be taken into account during the design phase.Therefore, we present a simulation toolchain for fast evaluation of hardware-aware CNN partitioning for embedded AI applications. This approach explores an efficient workload distribution between sensor nodes and a central edge node. Neither processing all layers close to the sensor nor transmitting all uncompressed raw data to the edge node is an optimal solution for each use case. Hence, our proposed simulation toolchain evaluates power and performance metrics for each reasonable partitioning point in a CNN. In contrast to the state of the art, our approach does not only consider the neural network architecture. In the evaluation, our simulation toolchain additionally takes into account hardware components such as special accelerators and memories that are implemented in the sensor node.Exemplary, we show the simulation results for three commonly used CNNs in embedded systems. Thereby, we identify advantageous partitioning points regarding inference latency and energy consumption. With the support of the toolchain, we are able to identify three beneficial partitioning points for FCN ResNet-50 and two for GoogLeNet as well as for SqueezeNet V1.1.\",\"PeriodicalId\":300416,\"journal\":{\"name\":\"2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCOSS54816.2022.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS54816.2022.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardware-aware Partitioning of Convolutional Neural Network Inference for Embedded AI Applications
Embedded image processing applications like multicamera-based object detection or semantic segmentation are often based on Convolutional Neural Networks (CNNs) to provide precise and reliable results. The deployment of CNNs in embedded systems, however, imposes additional constraints such as latency restrictions and limited energy consumption in the sensor platform. These requirements have to be considered during hardware/software co-design of embedded Artifical Intelligence (AI) applications. In addition, the transmission of uncompressed image data from the sensor to a central edge node requires large bandwidth on the link, which must also be taken into account during the design phase.Therefore, we present a simulation toolchain for fast evaluation of hardware-aware CNN partitioning for embedded AI applications. This approach explores an efficient workload distribution between sensor nodes and a central edge node. Neither processing all layers close to the sensor nor transmitting all uncompressed raw data to the edge node is an optimal solution for each use case. Hence, our proposed simulation toolchain evaluates power and performance metrics for each reasonable partitioning point in a CNN. In contrast to the state of the art, our approach does not only consider the neural network architecture. In the evaluation, our simulation toolchain additionally takes into account hardware components such as special accelerators and memories that are implemented in the sensor node.Exemplary, we show the simulation results for three commonly used CNNs in embedded systems. Thereby, we identify advantageous partitioning points regarding inference latency and energy consumption. With the support of the toolchain, we are able to identify three beneficial partitioning points for FCN ResNet-50 and two for GoogLeNet as well as for SqueezeNet V1.1.