TDMR中异步多轨检测的神经网络均衡

E. Sadeghian
{"title":"TDMR中异步多轨检测的神经网络均衡","authors":"E. Sadeghian","doi":"10.1109/TMRC56419.2022.9918163","DOIUrl":null,"url":null,"abstract":"The advent of multiple readers in magnetic recording opens the possibility of replacing the current industry's single-track detection with the more promising multitrack detection architectures. We have proposed a first solution, a generalized partial-response maximum-likelihood (GPRML) architecture, that extends the conventional PRML paradigm to jointly detect multiple asynchronous tracks. In this paper, we propose to replace the conventional communication-theoretic multiple-input multiple-output equalizer in the GPRML architecture with a neural network equalizer for better adaption to the nonlinearity of the underlying channel. We evaluate the proposed equalization strategy on a realistic two-dimensional magnetic-recording channel, and find that the proposed equalizer outperforms the conventional linear equalizer, by a 37% reduction in the bit-error rate and a 33% gain in the areal density.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network Equalization for Asynchronous Multitrack Detection in TDMR\",\"authors\":\"E. Sadeghian\",\"doi\":\"10.1109/TMRC56419.2022.9918163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of multiple readers in magnetic recording opens the possibility of replacing the current industry's single-track detection with the more promising multitrack detection architectures. We have proposed a first solution, a generalized partial-response maximum-likelihood (GPRML) architecture, that extends the conventional PRML paradigm to jointly detect multiple asynchronous tracks. In this paper, we propose to replace the conventional communication-theoretic multiple-input multiple-output equalizer in the GPRML architecture with a neural network equalizer for better adaption to the nonlinearity of the underlying channel. We evaluate the proposed equalization strategy on a realistic two-dimensional magnetic-recording channel, and find that the proposed equalizer outperforms the conventional linear equalizer, by a 37% reduction in the bit-error rate and a 33% gain in the areal density.\",\"PeriodicalId\":432413,\"journal\":{\"name\":\"2022 IEEE 33rd Magnetic Recording Conference (TMRC)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 33rd Magnetic Recording Conference (TMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMRC56419.2022.9918163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC56419.2022.9918163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁记录中多读卡器的出现开启了用更有前途的多轨道检测架构取代当前行业单轨道检测的可能性。我们提出了第一个解决方案,即广义部分响应最大似然(GPRML)架构,它扩展了传统的PRML范式,以联合检测多个异步轨迹。在本文中,我们提出用神经网络均衡器取代GPRML架构中传统的通信理论多输入多输出均衡器,以更好地适应底层信道的非线性。我们在现实的二维磁记录通道上评估了所提出的均衡策略,发现所提出的均衡器优于传统的线性均衡器,误码率降低了37%,面密度增加了33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Equalization for Asynchronous Multitrack Detection in TDMR
The advent of multiple readers in magnetic recording opens the possibility of replacing the current industry's single-track detection with the more promising multitrack detection architectures. We have proposed a first solution, a generalized partial-response maximum-likelihood (GPRML) architecture, that extends the conventional PRML paradigm to jointly detect multiple asynchronous tracks. In this paper, we propose to replace the conventional communication-theoretic multiple-input multiple-output equalizer in the GPRML architecture with a neural network equalizer for better adaption to the nonlinearity of the underlying channel. We evaluate the proposed equalization strategy on a realistic two-dimensional magnetic-recording channel, and find that the proposed equalizer outperforms the conventional linear equalizer, by a 37% reduction in the bit-error rate and a 33% gain in the areal density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信