具有双随机泊松过程模型的跳跃马尔可夫系统的鲁棒检测滤波器

W. P. Malcolm, R. Elliott
{"title":"具有双随机泊松过程模型的跳跃马尔可夫系统的鲁棒检测滤波器","authors":"W. P. Malcolm, R. Elliott","doi":"10.1109/IDC.2002.995386","DOIUrl":null,"url":null,"abstract":"In this article we consider a dynamic M-ary detection problem when Markov chains are observed through a doubly stochastic Poisson process. These systems are fully specified by a candidate set of parameters, whose elements are, a rate matrix for the Markov chain and a vector of Poisson intensities for the observation model. Further, we suppose these parameter sets can switch according to the state of an unobserved Markov chain and thereby produce an observation process generated by time varying (jump stochastic) parameter sets. Given such an observation process and an assumed collection of models, we compute a filter whose solution is the estimated probabilities of each model parameter set explaining the observation. By defining a new augmented state process, then applying the method of reference probability, we compute matrix-valued dynamics whose solutions estimate joint probabilities for all combinations of candidate model parameter sets, and values taken by the indirectly observed state process. These matrix-valued dynamics satisfy a stochastic integral equation with a Lebesgue-Stieltjes integrator. Using the gauge transformation techniques, we compute robust matrix-valued dynamics for the joint probabilities on the augmented state space. In these new dynamics the observed Poisson process appears as a parameter in the fundamental matrix of a linear ordinary differential equation, rather than an integrator in a stochastic integral equation.","PeriodicalId":385351,"journal":{"name":"Final Program and Abstracts on Information, Decision and Control","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust detection filters for jump Markov systems with doubly stochastic Poisson process models\",\"authors\":\"W. P. Malcolm, R. Elliott\",\"doi\":\"10.1109/IDC.2002.995386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we consider a dynamic M-ary detection problem when Markov chains are observed through a doubly stochastic Poisson process. These systems are fully specified by a candidate set of parameters, whose elements are, a rate matrix for the Markov chain and a vector of Poisson intensities for the observation model. Further, we suppose these parameter sets can switch according to the state of an unobserved Markov chain and thereby produce an observation process generated by time varying (jump stochastic) parameter sets. Given such an observation process and an assumed collection of models, we compute a filter whose solution is the estimated probabilities of each model parameter set explaining the observation. By defining a new augmented state process, then applying the method of reference probability, we compute matrix-valued dynamics whose solutions estimate joint probabilities for all combinations of candidate model parameter sets, and values taken by the indirectly observed state process. These matrix-valued dynamics satisfy a stochastic integral equation with a Lebesgue-Stieltjes integrator. Using the gauge transformation techniques, we compute robust matrix-valued dynamics for the joint probabilities on the augmented state space. In these new dynamics the observed Poisson process appears as a parameter in the fundamental matrix of a linear ordinary differential equation, rather than an integrator in a stochastic integral equation.\",\"PeriodicalId\":385351,\"journal\":{\"name\":\"Final Program and Abstracts on Information, Decision and Control\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Final Program and Abstracts on Information, Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDC.2002.995386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Final Program and Abstracts on Information, Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDC.2002.995386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了通过双随机泊松过程观察马尔可夫链时的动态M-ary检测问题。这些系统由候选参数集完全指定,其元素为马尔可夫链的速率矩阵和观测模型的泊松强度向量。进一步,我们假设这些参数集可以根据未观测马尔可夫链的状态进行切换,从而产生由时变(跳变随机)参数集生成的观测过程。给定这样的观测过程和假设的模型集合,我们计算一个滤波器,其解是解释观测的每个模型参数集的估计概率。通过定义一个新的增广状态过程,然后应用参考概率的方法,计算矩阵值动力学,其解估计候选模型参数集的所有组合的联合概率,以及间接观测状态过程的值。这些矩阵值动力学满足具有Lebesgue-Stieltjes积分器的随机积分方程。利用规范变换技术,对增广状态空间上的联合概率进行鲁棒矩阵值动力学计算。在这些新的动力学中,观测到的泊松过程作为一个参数出现在线性常微分方程的基本矩阵中,而不是随机积分方程中的积分器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust detection filters for jump Markov systems with doubly stochastic Poisson process models
In this article we consider a dynamic M-ary detection problem when Markov chains are observed through a doubly stochastic Poisson process. These systems are fully specified by a candidate set of parameters, whose elements are, a rate matrix for the Markov chain and a vector of Poisson intensities for the observation model. Further, we suppose these parameter sets can switch according to the state of an unobserved Markov chain and thereby produce an observation process generated by time varying (jump stochastic) parameter sets. Given such an observation process and an assumed collection of models, we compute a filter whose solution is the estimated probabilities of each model parameter set explaining the observation. By defining a new augmented state process, then applying the method of reference probability, we compute matrix-valued dynamics whose solutions estimate joint probabilities for all combinations of candidate model parameter sets, and values taken by the indirectly observed state process. These matrix-valued dynamics satisfy a stochastic integral equation with a Lebesgue-Stieltjes integrator. Using the gauge transformation techniques, we compute robust matrix-valued dynamics for the joint probabilities on the augmented state space. In these new dynamics the observed Poisson process appears as a parameter in the fundamental matrix of a linear ordinary differential equation, rather than an integrator in a stochastic integral equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信