{"title":"巴拿赫空间中的随机漫步及其函数","authors":"M. Chang","doi":"10.5109/13125","DOIUrl":null,"url":null,"abstract":"Let an : n 1} be a sequence of i.i.d. Banach space valued random variables with E[X„]=0 and Ell X.112<00, and let So=0, Sn= XiF X2+ . . . + Xn, n 1. We prove that if {Sn : n_. 1} satisfies the LIL in B then the sequence {77,, : n .1} satisfies the LIL in C([0, 1], B), where 77n(t)=S[nt]+ (nt—[nt]) X[nt]-14, Ot51 and C([°, 1], B) --={ f : [0, 1] ----. BI f is continuous}. We also use this result to give an alternative to the proof of the LIL of Brownian motion in Banach spaces.","PeriodicalId":287765,"journal":{"name":"Bulletin of Mathematical Statistics","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A RANDOM WALK AND ITS LIL IN A BANACH SPACE\",\"authors\":\"M. Chang\",\"doi\":\"10.5109/13125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let an : n 1} be a sequence of i.i.d. Banach space valued random variables with E[X„]=0 and Ell X.112<00, and let So=0, Sn= XiF X2+ . . . + Xn, n 1. We prove that if {Sn : n_. 1} satisfies the LIL in B then the sequence {77,, : n .1} satisfies the LIL in C([0, 1], B), where 77n(t)=S[nt]+ (nt—[nt]) X[nt]-14, Ot51 and C([°, 1], B) --={ f : [0, 1] ----. BI f is continuous}. We also use this result to give an alternative to the proof of the LIL of Brownian motion in Banach spaces.\",\"PeriodicalId\":287765,\"journal\":{\"name\":\"Bulletin of Mathematical Statistics\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5109/13125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5109/13125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设an: n 1}是一个序列,其中E[X "]=0且Ell X.112<00的Banach空间值随机变量,设So=0, Sn= XiF X2+…+ Xn n 1。我们证明如果{Sn: n_。1}满足B中的LIL,则序列{77,,:n .1}满足C([0,1], B)中的LIL,其中77n(t)=S[nt]+ (nt - [nt]) X[nt]-14, Ot51和C([°,1],B)—={f:[0,1] ----。BI f是连续的。我们还利用这一结果给出了巴拿赫空间中布朗运动LIL的另一种证明。
Let an : n 1} be a sequence of i.i.d. Banach space valued random variables with E[X„]=0 and Ell X.112<00, and let So=0, Sn= XiF X2+ . . . + Xn, n 1. We prove that if {Sn : n_. 1} satisfies the LIL in B then the sequence {77,, : n .1} satisfies the LIL in C([0, 1], B), where 77n(t)=S[nt]+ (nt—[nt]) X[nt]-14, Ot51 and C([°, 1], B) --={ f : [0, 1] ----. BI f is continuous}. We also use this result to give an alternative to the proof of the LIL of Brownian motion in Banach spaces.