基于lp范数的多核学习在高光谱图像处理中的融合

M. Islam, Derek T. Anderson, J. Ball, N. Younan
{"title":"基于lp范数的多核学习在高光谱图像处理中的融合","authors":"M. Islam, Derek T. Anderson, J. Ball, N. Younan","doi":"10.1109/WHISPERS.2016.8071712","DOIUrl":null,"url":null,"abstract":"Multiple kernel learning (MKL) is an elegant tool for heterogeneous fusion. In support vector machine (SVM) based classification, MK is a homogenization transform and it provides flexibility in searching for high-quality linearly separable solutions in the reproducing kernel Hilbert space (RKHS). However, performance often depends on input and kernel diversity. Herein, we explore a new way to extract diverse features from hyperspectral imagery using different proximity measures and band grouping. The output is fed to ℓp-norm MKL for feature-level fusion, where larger p's are preferred for diverse vs sparse solutions. Preliminary results on benchmark data indicates that ℓp-norm MKSVM of diverse features and kernels leads to noticeable performance gain.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fusion of diverse features and kernels using LP-norm based multiple kernel learning in hyperspectral image processing\",\"authors\":\"M. Islam, Derek T. Anderson, J. Ball, N. Younan\",\"doi\":\"10.1109/WHISPERS.2016.8071712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple kernel learning (MKL) is an elegant tool for heterogeneous fusion. In support vector machine (SVM) based classification, MK is a homogenization transform and it provides flexibility in searching for high-quality linearly separable solutions in the reproducing kernel Hilbert space (RKHS). However, performance often depends on input and kernel diversity. Herein, we explore a new way to extract diverse features from hyperspectral imagery using different proximity measures and band grouping. The output is fed to ℓp-norm MKL for feature-level fusion, where larger p's are preferred for diverse vs sparse solutions. Preliminary results on benchmark data indicates that ℓp-norm MKSVM of diverse features and kernels leads to noticeable performance gain.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

多核学习(MKL)是一种优秀的异构融合工具。在基于支持向量机(SVM)的分类中,MK是一种均匀化变换,它为在再现核希尔伯特空间(RKHS)中搜索高质量的线性可分解提供了灵活性。然而,性能通常取决于输入和内核多样性。在此,我们探索了一种利用不同的接近度量和波段分组从高光谱图像中提取不同特征的新方法。输出被馈送到r p范数MKL用于特征级融合,其中较大的p对于多样化和稀疏的解决方案是首选的。在基准数据上的初步结果表明,不同特征和核的p-范数MKSVM可以显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion of diverse features and kernels using LP-norm based multiple kernel learning in hyperspectral image processing
Multiple kernel learning (MKL) is an elegant tool for heterogeneous fusion. In support vector machine (SVM) based classification, MK is a homogenization transform and it provides flexibility in searching for high-quality linearly separable solutions in the reproducing kernel Hilbert space (RKHS). However, performance often depends on input and kernel diversity. Herein, we explore a new way to extract diverse features from hyperspectral imagery using different proximity measures and band grouping. The output is fed to ℓp-norm MKL for feature-level fusion, where larger p's are preferred for diverse vs sparse solutions. Preliminary results on benchmark data indicates that ℓp-norm MKSVM of diverse features and kernels leads to noticeable performance gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信