基于学习的图像分割方法

H. Legal-Ayala, J. Facon
{"title":"基于学习的图像分割方法","authors":"H. Legal-Ayala, J. Facon","doi":"10.1109/ICDAR.2003.1227776","DOIUrl":null,"url":null,"abstract":"This article describes a new segmentation bythresholding approach based on learning. The methodconsists in learning to threshold correctly submitting bothan image and its ideal thresholded version. From thisstage it is generated a decision matrix for each pixel andeach gray level that is re-utilized at the moment of thenew images segmentation. The new image is thresholdedby means of a new strategy based on the nearestneighbors, that seeks, for each pixel of this new image,the best solution in the decision matrix. Performed testson handwritten documents showed promising results. Interms of quality of the results, the developed technique isequal or superior to the traditional segmentation bythresholding techniques, with the advantage that the onediscussed here does not requires the use of heuristicparameters.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image segmentation by learning approach\",\"authors\":\"H. Legal-Ayala, J. Facon\",\"doi\":\"10.1109/ICDAR.2003.1227776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a new segmentation bythresholding approach based on learning. The methodconsists in learning to threshold correctly submitting bothan image and its ideal thresholded version. From thisstage it is generated a decision matrix for each pixel andeach gray level that is re-utilized at the moment of thenew images segmentation. The new image is thresholdedby means of a new strategy based on the nearestneighbors, that seeks, for each pixel of this new image,the best solution in the decision matrix. Performed testson handwritten documents showed promising results. Interms of quality of the results, the developed technique isequal or superior to the traditional segmentation bythresholding techniques, with the advantage that the onediscussed here does not requires the use of heuristicparameters.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了一种新的基于学习的阈值分割方法。该方法包括学习正确提交图像及其理想阈值版本的阈值。从这个阶段开始,它为每个像素和每个灰度级生成一个决策矩阵,在新的图像分割时刻重新利用。通过基于最近邻的新策略对新图像进行阈值设置,该策略为新图像的每个像素寻找决策矩阵中的最佳解。对手写文件进行的测试显示了令人鼓舞的结果。就结果的质量而言,所开发的技术等于或优于传统的阈值分割技术,其优点是这里讨论的技术不需要使用启发式参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image segmentation by learning approach
This article describes a new segmentation bythresholding approach based on learning. The methodconsists in learning to threshold correctly submitting bothan image and its ideal thresholded version. From thisstage it is generated a decision matrix for each pixel andeach gray level that is re-utilized at the moment of thenew images segmentation. The new image is thresholdedby means of a new strategy based on the nearestneighbors, that seeks, for each pixel of this new image,the best solution in the decision matrix. Performed testson handwritten documents showed promising results. Interms of quality of the results, the developed technique isequal or superior to the traditional segmentation bythresholding techniques, with the advantage that the onediscussed here does not requires the use of heuristicparameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信