无人机的3D G-learning

Shangzhen Luan, Yun Yang, Hainan Wang, Baochang Zhang, Baoguo Yu, Chenglong He
{"title":"无人机的3D G-learning","authors":"Shangzhen Luan, Yun Yang, Hainan Wang, Baochang Zhang, Baoguo Yu, Chenglong He","doi":"10.1109/ICIEA.2017.8282976","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the learning strategy of path planning for Unmanned Aerial Vehicles (UAVs). We propose the G-Learning method to solve the problem of path planning in 3D and optimize the model algorithm. With G-Learning algorithm, the cost matrix can be calculated in real-time and adaptively updated based on the geometric distance and risk information shared with other UAVs. Extensive experimental results validate the effectiveness and feasibility of CGLA for safe navigation of multiple UAVs.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"3D G-learning in UAVs\",\"authors\":\"Shangzhen Luan, Yun Yang, Hainan Wang, Baochang Zhang, Baoguo Yu, Chenglong He\",\"doi\":\"10.1109/ICIEA.2017.8282976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the learning strategy of path planning for Unmanned Aerial Vehicles (UAVs). We propose the G-Learning method to solve the problem of path planning in 3D and optimize the model algorithm. With G-Learning algorithm, the cost matrix can be calculated in real-time and adaptively updated based on the geometric distance and risk information shared with other UAVs. Extensive experimental results validate the effectiveness and feasibility of CGLA for safe navigation of multiple UAVs.\",\"PeriodicalId\":443463,\"journal\":{\"name\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2017.8282976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8282976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文主要研究了无人机路径规划的学习策略。提出了G-Learning方法来解决三维路径规划问题,并对模型算法进行了优化。利用G-Learning算法,可以实时计算成本矩阵,并根据与其他无人机共享的几何距离和风险信息自适应更新成本矩阵。大量的实验结果验证了CGLA在多无人机安全导航中的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D G-learning in UAVs
In this paper, we focus on the learning strategy of path planning for Unmanned Aerial Vehicles (UAVs). We propose the G-Learning method to solve the problem of path planning in 3D and optimize the model algorithm. With G-Learning algorithm, the cost matrix can be calculated in real-time and adaptively updated based on the geometric distance and risk information shared with other UAVs. Extensive experimental results validate the effectiveness and feasibility of CGLA for safe navigation of multiple UAVs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信