向量微积分定理

J. Breen
{"title":"向量微积分定理","authors":"J. Breen","doi":"10.2174/9789811415081119010014","DOIUrl":null,"url":null,"abstract":"One of the more intimidating parts of vector calculus is the wealth of so-called fundamental theorems: i. The Gradient Theorem1 ii. Green’s Theorem iii. Stokes’ Theorem iv. The Divergence Theorem Understanding when and how to use each of these can be confusing and overwhelming. The following discussion is meant to give some insight as to how each of these theorems are related. Our guiding principle will be that the four theorems above arise as generalizations of the Fundamental Theorem of Calculus.","PeriodicalId":176999,"journal":{"name":"Advanced Calculus Fundamentals of Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theorems of Vector Calculus\",\"authors\":\"J. Breen\",\"doi\":\"10.2174/9789811415081119010014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the more intimidating parts of vector calculus is the wealth of so-called fundamental theorems: i. The Gradient Theorem1 ii. Green’s Theorem iii. Stokes’ Theorem iv. The Divergence Theorem Understanding when and how to use each of these can be confusing and overwhelming. The following discussion is meant to give some insight as to how each of these theorems are related. Our guiding principle will be that the four theorems above arise as generalizations of the Fundamental Theorem of Calculus.\",\"PeriodicalId\":176999,\"journal\":{\"name\":\"Advanced Calculus Fundamentals of Mathematics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Calculus Fundamentals of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/9789811415081119010014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Calculus Fundamentals of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/9789811415081119010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

向量微积分中最令人生畏的部分之一是所谓的基本定理:1、梯度定理。格林定理iii。理解何时以及如何使用这些定理可能会令人困惑和不知所措。下面的讨论旨在深入了解这些定理是如何相互关联的。我们的指导原则是,以上四个定理是对微积分基本定理的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theorems of Vector Calculus
One of the more intimidating parts of vector calculus is the wealth of so-called fundamental theorems: i. The Gradient Theorem1 ii. Green’s Theorem iii. Stokes’ Theorem iv. The Divergence Theorem Understanding when and how to use each of these can be confusing and overwhelming. The following discussion is meant to give some insight as to how each of these theorems are related. Our guiding principle will be that the four theorems above arise as generalizations of the Fundamental Theorem of Calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信