基于物理的汽车驾驶员辅助智能路面深度嵌入分类器

F. Rundo, R. Leotta, V. Piuri, A. Genovese, F. Scotti, S. Battiato
{"title":"基于物理的汽车驾驶员辅助智能路面深度嵌入分类器","authors":"F. Rundo, R. Leotta, V. Piuri, A. Genovese, F. Scotti, S. Battiato","doi":"10.1109/ICAS49788.2021.9551124","DOIUrl":null,"url":null,"abstract":"Car driving safety represents one of the major targets of the ADAS (Advanced Driver Assistance Systems) technologies deeply investigated by the scientific community and car makers. From intelligent suspension control systems to adaptive braking systems, the ADAS solutions allows to significantly improve both driving comfort and safety. The aim of this contribution is to propose a driving safety assessment system based on deep networks equipped with self-attention Criss-Cross mechanism to classify the driving road surface combined with a physio-based drowsiness monitoring of the driver. The retrieved driving safety assessment performance confirmed the effectiveness of the proposed pipeline.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Road Surface Deep Embedded Classifier for an Efficient Physio-Based Car Driver Assistance\",\"authors\":\"F. Rundo, R. Leotta, V. Piuri, A. Genovese, F. Scotti, S. Battiato\",\"doi\":\"10.1109/ICAS49788.2021.9551124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Car driving safety represents one of the major targets of the ADAS (Advanced Driver Assistance Systems) technologies deeply investigated by the scientific community and car makers. From intelligent suspension control systems to adaptive braking systems, the ADAS solutions allows to significantly improve both driving comfort and safety. The aim of this contribution is to propose a driving safety assessment system based on deep networks equipped with self-attention Criss-Cross mechanism to classify the driving road surface combined with a physio-based drowsiness monitoring of the driver. The retrieved driving safety assessment performance confirmed the effectiveness of the proposed pipeline.\",\"PeriodicalId\":287105,\"journal\":{\"name\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAS49788.2021.9551124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

汽车驾驶安全是先进驾驶辅助系统(ADAS)技术被科学界和汽车制造商深入研究的主要目标之一。从智能悬架控制系统到自适应制动系统,ADAS解决方案可以显著提高驾驶舒适性和安全性。本贡献的目的是提出一种基于深度网络的驾驶安全评估系统,该系统配备了自关注交叉机制,可以对驾驶路面进行分类,并结合基于物理的驾驶员困倦监测。检索到的行车安全评价结果证实了该管道的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Road Surface Deep Embedded Classifier for an Efficient Physio-Based Car Driver Assistance
Car driving safety represents one of the major targets of the ADAS (Advanced Driver Assistance Systems) technologies deeply investigated by the scientific community and car makers. From intelligent suspension control systems to adaptive braking systems, the ADAS solutions allows to significantly improve both driving comfort and safety. The aim of this contribution is to propose a driving safety assessment system based on deep networks equipped with self-attention Criss-Cross mechanism to classify the driving road surface combined with a physio-based drowsiness monitoring of the driver. The retrieved driving safety assessment performance confirmed the effectiveness of the proposed pipeline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信