深度证明搜索在MELL

Ozan Kahramanoğulları
{"title":"深度证明搜索在MELL","authors":"Ozan Kahramanoğulları","doi":"10.29007/p1fd","DOIUrl":null,"url":null,"abstract":"The deep inference presentation of multiplicative exponential linear logic (MELL) benefits from a rich combinatoric analysis with many more proofs in comparison to its sequent calculus presentation. In the deep inference setting, all the sequent calculus proofs are preserved. Moreover, many other proofs become available, and some of these proofs are much shorter. However, proof search in deep inference is subject to a greater nondeterminism, and this nondeterminism constitutes a bottleneck for applications. To this end, we address the problem of reducing nondeterminism in MELL by refining and extending our technique that has been previously applied to multiplicative linear logic and classical logic. We show that, besides the nondeterminism in commutative contexts, the nondeterminism in exponential contexts can be reduced in a proof theoretically clean manner. The method conserves the exponential speed-up in proof construction due to deep inference, exemplified by Statman tautologies. We validate the improvement in accessing the shorter proofs by experiments with our implementations.","PeriodicalId":207621,"journal":{"name":"Logic Programming and Automated Reasoning","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Proof Search in MELL\",\"authors\":\"Ozan Kahramanoğulları\",\"doi\":\"10.29007/p1fd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deep inference presentation of multiplicative exponential linear logic (MELL) benefits from a rich combinatoric analysis with many more proofs in comparison to its sequent calculus presentation. In the deep inference setting, all the sequent calculus proofs are preserved. Moreover, many other proofs become available, and some of these proofs are much shorter. However, proof search in deep inference is subject to a greater nondeterminism, and this nondeterminism constitutes a bottleneck for applications. To this end, we address the problem of reducing nondeterminism in MELL by refining and extending our technique that has been previously applied to multiplicative linear logic and classical logic. We show that, besides the nondeterminism in commutative contexts, the nondeterminism in exponential contexts can be reduced in a proof theoretically clean manner. The method conserves the exponential speed-up in proof construction due to deep inference, exemplified by Statman tautologies. We validate the improvement in accessing the shorter proofs by experiments with our implementations.\",\"PeriodicalId\":207621,\"journal\":{\"name\":\"Logic Programming and Automated Reasoning\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Programming and Automated Reasoning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/p1fd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Programming and Automated Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/p1fd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乘性指数线性逻辑的深度推理表示得益于其丰富的组合分析和更多的证明,而不是其顺序演算表示。在深度推理设置下,所有的序列演算证明都被保留。此外,还出现了许多其他证明,其中一些证明要短得多。然而,深度推理中的证明搜索具有较大的不确定性,这种不确定性构成了应用的瓶颈。为此,我们通过改进和扩展我们先前应用于乘法线性逻辑和经典逻辑的技术来解决减少MELL中的不确定性的问题。我们证明,除了交换条件下的不确定性外,指数条件下的不确定性也可以用一种理论上清晰的证明方式来简化。该方法保留了由于深度推理导致的证明构造的指数加速,以Statman重言式为例。我们通过实验验证了在访问较短证明方面的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Proof Search in MELL
The deep inference presentation of multiplicative exponential linear logic (MELL) benefits from a rich combinatoric analysis with many more proofs in comparison to its sequent calculus presentation. In the deep inference setting, all the sequent calculus proofs are preserved. Moreover, many other proofs become available, and some of these proofs are much shorter. However, proof search in deep inference is subject to a greater nondeterminism, and this nondeterminism constitutes a bottleneck for applications. To this end, we address the problem of reducing nondeterminism in MELL by refining and extending our technique that has been previously applied to multiplicative linear logic and classical logic. We show that, besides the nondeterminism in commutative contexts, the nondeterminism in exponential contexts can be reduced in a proof theoretically clean manner. The method conserves the exponential speed-up in proof construction due to deep inference, exemplified by Statman tautologies. We validate the improvement in accessing the shorter proofs by experiments with our implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信