基于改进Fukuyama-Sugeno聚类效度指标的改进模糊聚类方法

Sailik Sengupta, Soham De, A. Konar, R. Janarthanan
{"title":"基于改进Fukuyama-Sugeno聚类效度指标的改进模糊聚类方法","authors":"Sailik Sengupta, Soham De, A. Konar, R. Janarthanan","doi":"10.1109/ReTIS.2011.6146880","DOIUrl":null,"url":null,"abstract":"The objective of clustering algorithms is to group similar patterns in one class and dissimilar patterns in disjoint classes. This article proposes a novel algorithm for fuzzy partitional clustering with an aim to minimize a composite objective function, defined using the Fukuyama-Sugeno cluster validity index. The optimization of this objective function tries to minimize the separation between clusters of a data set and maximize the compactness of a certain cluster. But in certain cases, such as a data set having overlapping clusters, this approach leads to poor clustering results. Thus we introduce a new parameter in the objective function which enables us to yield more accurate clustering results. The algorithm has been validated with some artificial and real world datasets.","PeriodicalId":137916,"journal":{"name":"2011 International Conference on Recent Trends in Information Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An improved fuzzy clustering method using modified Fukuyama-Sugeno cluster validity index\",\"authors\":\"Sailik Sengupta, Soham De, A. Konar, R. Janarthanan\",\"doi\":\"10.1109/ReTIS.2011.6146880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of clustering algorithms is to group similar patterns in one class and dissimilar patterns in disjoint classes. This article proposes a novel algorithm for fuzzy partitional clustering with an aim to minimize a composite objective function, defined using the Fukuyama-Sugeno cluster validity index. The optimization of this objective function tries to minimize the separation between clusters of a data set and maximize the compactness of a certain cluster. But in certain cases, such as a data set having overlapping clusters, this approach leads to poor clustering results. Thus we introduce a new parameter in the objective function which enables us to yield more accurate clustering results. The algorithm has been validated with some artificial and real world datasets.\",\"PeriodicalId\":137916,\"journal\":{\"name\":\"2011 International Conference on Recent Trends in Information Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Recent Trends in Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReTIS.2011.6146880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Recent Trends in Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReTIS.2011.6146880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

聚类算法的目标是将相似的模式归为一类,将不相似的模式归为不相交的类。本文提出了一种基于Fukuyama-Sugeno聚类有效性指数的模糊分段聚类算法,该算法以最小化复合目标函数为目标。这个目标函数的优化试图最小化一个数据集的簇之间的分离,最大化某个簇的紧凑性。但是在某些情况下,例如具有重叠聚类的数据集,这种方法会导致较差的聚类结果。因此,我们在目标函数中引入了一个新的参数,使我们能够得到更准确的聚类结果。该算法已通过一些人工和现实世界的数据集进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved fuzzy clustering method using modified Fukuyama-Sugeno cluster validity index
The objective of clustering algorithms is to group similar patterns in one class and dissimilar patterns in disjoint classes. This article proposes a novel algorithm for fuzzy partitional clustering with an aim to minimize a composite objective function, defined using the Fukuyama-Sugeno cluster validity index. The optimization of this objective function tries to minimize the separation between clusters of a data set and maximize the compactness of a certain cluster. But in certain cases, such as a data set having overlapping clusters, this approach leads to poor clustering results. Thus we introduce a new parameter in the objective function which enables us to yield more accurate clustering results. The algorithm has been validated with some artificial and real world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信