一元层次和一元层次的相关层次

David Janin, G. Lenzi
{"title":"一元层次和一元层次的相关层次","authors":"David Janin, G. Lenzi","doi":"10.1109/LICS.2001.932510","DOIUrl":null,"url":null,"abstract":"As is already known from the work of D. Janin & I. Walukiewicz (1996), the mu-calculus is as expressive as the bisimulation-invariant fragment of monadic second-order logic. In this paper, we relate the expressiveness of levels of the fixpoint alternation depth hierarchy of the mu-calculus (the mu-calculus hierarchy) with the expressiveness of the bisimulation-invariant fragment of levels of the monadic quantifiers alternation-depth hierarchy (the monadic hierarchy). From J. van Benthem's (1976) results, we know already that the fixpoint free fragment of the mu-calculus (i.e. polymodal logic) is as expressive as the bisimulation-invariant fragment of monadic /spl Sigma//sub 0/ (i.e. first-order logic). We show that the /spl nu/-level of the mu-calculus hierarchy is as expressive as the bisimulation-invariant fragment of monadic /spl Sigma//sub 1/ and that the /spl nu//spl mu/-level of the mu-calculus hierarchy is as expressive as the bisimulation-invariant fragment of monadic /spl Sigma//sub 2/, and we show that no other level /spl Sigma//sub k/ (for k>2) of the monadic hierarchy can be related similarly with any other level of the mu-calculus hierarchy. The possible inclusion of all the mu-calculus in some level /spl Sigma//sub k/ of the monadic hierarchy, for some k>2, is also discussed.","PeriodicalId":366313,"journal":{"name":"Proceedings 16th Annual IEEE Symposium on Logic in Computer Science","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Relating levels of the mu-calculus hierarchy and levels of the monadic hierarchy\",\"authors\":\"David Janin, G. Lenzi\",\"doi\":\"10.1109/LICS.2001.932510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As is already known from the work of D. Janin & I. Walukiewicz (1996), the mu-calculus is as expressive as the bisimulation-invariant fragment of monadic second-order logic. In this paper, we relate the expressiveness of levels of the fixpoint alternation depth hierarchy of the mu-calculus (the mu-calculus hierarchy) with the expressiveness of the bisimulation-invariant fragment of levels of the monadic quantifiers alternation-depth hierarchy (the monadic hierarchy). From J. van Benthem's (1976) results, we know already that the fixpoint free fragment of the mu-calculus (i.e. polymodal logic) is as expressive as the bisimulation-invariant fragment of monadic /spl Sigma//sub 0/ (i.e. first-order logic). We show that the /spl nu/-level of the mu-calculus hierarchy is as expressive as the bisimulation-invariant fragment of monadic /spl Sigma//sub 1/ and that the /spl nu//spl mu/-level of the mu-calculus hierarchy is as expressive as the bisimulation-invariant fragment of monadic /spl Sigma//sub 2/, and we show that no other level /spl Sigma//sub k/ (for k>2) of the monadic hierarchy can be related similarly with any other level of the mu-calculus hierarchy. The possible inclusion of all the mu-calculus in some level /spl Sigma//sub k/ of the monadic hierarchy, for some k>2, is also discussed.\",\"PeriodicalId\":366313,\"journal\":{\"name\":\"Proceedings 16th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2001.932510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2001.932510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

从D. Janin和I. Walukiewicz(1996)的工作中已经知道,mu演算与一元二阶逻辑的双模拟不变片段一样具有表现力。在本文中,我们将算子的不动点交替深度层次(算子层次)的层次的可表达性与一元量词交替深度层次(一元层次)的层次的双模拟不变片段的可表达性联系起来。从J. van Benthem(1976)的结果中,我们已经知道mu-calculus的不动点自由片段(即多模态逻辑)与monadic /spl Sigma//sub 0/的双模拟不变片段(即一阶逻辑)具有同样的表达性。我们证明了mu-微积分层次的/spl nu/-水平与monadic /spl Sigma//sub 1/的双模拟不变片段具有同样的表达性,并且证明了mu-微积分层次的/spl nu//spl mu/-水平与monadic /spl Sigma//sub 2/的双模拟不变片段具有同样的表达性,并且我们证明了一元层次的/spl Sigma//sub k/(对于k>2)没有其他水平可以与mu-微积分层次的任何其他水平相似。对于k>2的一元层次,讨论了在某一级/spl σ //下标k/中包含所有mu微积分的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relating levels of the mu-calculus hierarchy and levels of the monadic hierarchy
As is already known from the work of D. Janin & I. Walukiewicz (1996), the mu-calculus is as expressive as the bisimulation-invariant fragment of monadic second-order logic. In this paper, we relate the expressiveness of levels of the fixpoint alternation depth hierarchy of the mu-calculus (the mu-calculus hierarchy) with the expressiveness of the bisimulation-invariant fragment of levels of the monadic quantifiers alternation-depth hierarchy (the monadic hierarchy). From J. van Benthem's (1976) results, we know already that the fixpoint free fragment of the mu-calculus (i.e. polymodal logic) is as expressive as the bisimulation-invariant fragment of monadic /spl Sigma//sub 0/ (i.e. first-order logic). We show that the /spl nu/-level of the mu-calculus hierarchy is as expressive as the bisimulation-invariant fragment of monadic /spl Sigma//sub 1/ and that the /spl nu//spl mu/-level of the mu-calculus hierarchy is as expressive as the bisimulation-invariant fragment of monadic /spl Sigma//sub 2/, and we show that no other level /spl Sigma//sub k/ (for k>2) of the monadic hierarchy can be related similarly with any other level of the mu-calculus hierarchy. The possible inclusion of all the mu-calculus in some level /spl Sigma//sub k/ of the monadic hierarchy, for some k>2, is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信