基于半球面投影模型的四通道三维环视监测算法

Jung-Hwan Kim, Joonhong Lim
{"title":"基于半球面投影模型的四通道三维环视监测算法","authors":"Jung-Hwan Kim, Joonhong Lim","doi":"10.1142/S2301385019410024","DOIUrl":null,"url":null,"abstract":"Most current vehicle black boxes provide a bird’s-eye view of 2D type. This viewpoint has a limited viewing angle which makes it difficult to conduct an accident investigation, parking and awareness of space. To solve these problems, we propose the 3D Around View Monitoring (AVM) algorithm using image composition which combines planar and hemispherical projection method. The experimental results indicate that the proposed method overcome the 2D AVM disadvantages and may be useful for accurate accident investigation, autonomous driving system and other system.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-Channel 3D Around View Monitoring Algorithm Using Hemispherical Projection Model\",\"authors\":\"Jung-Hwan Kim, Joonhong Lim\",\"doi\":\"10.1142/S2301385019410024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most current vehicle black boxes provide a bird’s-eye view of 2D type. This viewpoint has a limited viewing angle which makes it difficult to conduct an accident investigation, parking and awareness of space. To solve these problems, we propose the 3D Around View Monitoring (AVM) algorithm using image composition which combines planar and hemispherical projection method. The experimental results indicate that the proposed method overcome the 2D AVM disadvantages and may be useful for accurate accident investigation, autonomous driving system and other system.\",\"PeriodicalId\":164619,\"journal\":{\"name\":\"Unmanned Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unmanned Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2301385019410024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2301385019410024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前大多数车辆黑匣子都提供2D型鸟瞰图。这种视点的视角有限,难以进行事故调查、停车和空间意识。为了解决这些问题,我们提出了一种结合平面投影法和半球面投影法的三维环视监测算法(AVM)。实验结果表明,该方法克服了二维AVM的缺点,可用于准确的事故调查、自动驾驶系统和其他系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four-Channel 3D Around View Monitoring Algorithm Using Hemispherical Projection Model
Most current vehicle black boxes provide a bird’s-eye view of 2D type. This viewpoint has a limited viewing angle which makes it difficult to conduct an accident investigation, parking and awareness of space. To solve these problems, we propose the 3D Around View Monitoring (AVM) algorithm using image composition which combines planar and hemispherical projection method. The experimental results indicate that the proposed method overcome the 2D AVM disadvantages and may be useful for accurate accident investigation, autonomous driving system and other system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信