人类工作记忆的层次编码

Guoqi Li, Jing Pei, C. Wen, Zhengguo Li, Guangshe Zhao, Luping Shi
{"title":"人类工作记忆的层次编码","authors":"Guoqi Li, Jing Pei, C. Wen, Zhengguo Li, Guangshe Zhao, Luping Shi","doi":"10.1109/ICIEA.2015.7334232","DOIUrl":null,"url":null,"abstract":"A model for encoding and the retrieve of the sequential working memory is proposed by using bidirectional inhibition-connected neural networks with winnerless competition. It is found that the retrieve accuracy is dependent on the encoding time the the properties of the neural inhibition weights. The simulation results shows the effectiveness of our proposed model.","PeriodicalId":270660,"journal":{"name":"2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical encoding of human working memory\",\"authors\":\"Guoqi Li, Jing Pei, C. Wen, Zhengguo Li, Guangshe Zhao, Luping Shi\",\"doi\":\"10.1109/ICIEA.2015.7334232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model for encoding and the retrieve of the sequential working memory is proposed by using bidirectional inhibition-connected neural networks with winnerless competition. It is found that the retrieve accuracy is dependent on the encoding time the the properties of the neural inhibition weights. The simulation results shows the effectiveness of our proposed model.\",\"PeriodicalId\":270660,\"journal\":{\"name\":\"2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2015.7334232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2015.7334232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于双向抑制连接的无赢家竞争神经网络序列工作记忆的编码和检索模型。结果表明,检索精度与编码时间和神经抑制权值的性质有关。仿真结果表明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical encoding of human working memory
A model for encoding and the retrieve of the sequential working memory is proposed by using bidirectional inhibition-connected neural networks with winnerless competition. It is found that the retrieve accuracy is dependent on the encoding time the the properties of the neural inhibition weights. The simulation results shows the effectiveness of our proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信