深海海洋哺乳动物减压病症状的声触发可能机制

J. Potter
{"title":"深海海洋哺乳动物减压病症状的声触发可能机制","authors":"J. Potter","doi":"10.1109/UT.2004.1405608","DOIUrl":null,"url":null,"abstract":"An interest in plausible mechanisms for significant acoustic impact on some species of marine mammals at receive levels significantly below that currently anticipated to cause direct physical trauma has arisen in response to questions of how the operation of sonars may have contributed to mass beaching events of beaked whales. Resonance in cavities and other specific structures was at one time proposed as a mechanism, but after some scrutiny this now appears unlikely. Rectified diffusion was posed as another candidate, but has been demonstrated to be significant only at relatively high pressure levels, exceeding receive levels anticipated in observed beaching circumstances. We examine an alternative proposition; that pre-existing micro-bubbles that are normally stabilized and which do not normally permit gas exchange across their walls can be acoustically activated so that continued growth is supported through static diffusion from super-saturated tissues in the absence of an acoustic field. The proposed mechanism would explain why micro bubbles (believed to be normally present in mammalian tissues) do not grow and cause decompression sickness (DCS) in healthy deep divers with super-saturated tissues, why these micro bubbles do not collapse under the Laplace pressure exerted by surface tension in unsaturated tissues, and why long-duration, deep diving cetaceans such as beaked whales appear to be particularly vulnerable to anthropogenic acoustic exposures. Numerical results for bubble growth modelled according to the treatments of Crum and Mao under tissue super-saturations of 200-300% (an appropriate range for deep-diving marine mammals on surfacing) show that if micro-bubble gas exchange could be activated acoustically, even by only a very brief exposure, this would result in subsequent bubble growth by static gas diffusion so that within 10 minutes their size would be sufficient to cause symptoms of decompression sickness (DCS)","PeriodicalId":437450,"journal":{"name":"Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No.04EX869)","volume":"42 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A possible mechanism for acoustic triggering of decompression sickness symptoms in deep-diving marine mammals\",\"authors\":\"J. Potter\",\"doi\":\"10.1109/UT.2004.1405608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interest in plausible mechanisms for significant acoustic impact on some species of marine mammals at receive levels significantly below that currently anticipated to cause direct physical trauma has arisen in response to questions of how the operation of sonars may have contributed to mass beaching events of beaked whales. Resonance in cavities and other specific structures was at one time proposed as a mechanism, but after some scrutiny this now appears unlikely. Rectified diffusion was posed as another candidate, but has been demonstrated to be significant only at relatively high pressure levels, exceeding receive levels anticipated in observed beaching circumstances. We examine an alternative proposition; that pre-existing micro-bubbles that are normally stabilized and which do not normally permit gas exchange across their walls can be acoustically activated so that continued growth is supported through static diffusion from super-saturated tissues in the absence of an acoustic field. The proposed mechanism would explain why micro bubbles (believed to be normally present in mammalian tissues) do not grow and cause decompression sickness (DCS) in healthy deep divers with super-saturated tissues, why these micro bubbles do not collapse under the Laplace pressure exerted by surface tension in unsaturated tissues, and why long-duration, deep diving cetaceans such as beaked whales appear to be particularly vulnerable to anthropogenic acoustic exposures. Numerical results for bubble growth modelled according to the treatments of Crum and Mao under tissue super-saturations of 200-300% (an appropriate range for deep-diving marine mammals on surfacing) show that if micro-bubble gas exchange could be activated acoustically, even by only a very brief exposure, this would result in subsequent bubble growth by static gas diffusion so that within 10 minutes their size would be sufficient to cause symptoms of decompression sickness (DCS)\",\"PeriodicalId\":437450,\"journal\":{\"name\":\"Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No.04EX869)\",\"volume\":\"42 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No.04EX869)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UT.2004.1405608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No.04EX869)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UT.2004.1405608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

由于声纳的操作可能导致了喙鲸的大规模搁浅事件,人们对某些海洋哺乳动物在远低于目前预期的直接身体创伤的接收水平下产生重大声学影响的合理机制产生了兴趣。空腔和其他特定结构中的共振曾一度被认为是一种机制,但经过一番仔细研究后,现在看来不太可能。整流扩散被认为是另一个候选,但已被证明只有在相对较高的压力水平下才有意义,超过在观察到的搁浅情况下预期的接收水平。我们考察另一个命题;先前存在的微气泡通常是稳定的,通常不允许气体在其壁上交换,可以通过声学激活,以便在没有声场的情况下通过过饱和组织的静态扩散来支持持续生长。所提出的机制将解释为什么微气泡(被认为通常存在于哺乳动物组织中)不会在具有超饱和组织的健康深潜者中生长并导致减压病(DCS),为什么这些微气泡在不饱和组织中由表面张力施加的拉普拉斯压力下不会崩溃,以及为什么长时间深潜的鲸目动物(如喙鲸)似乎特别容易受到人为声音暴露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A possible mechanism for acoustic triggering of decompression sickness symptoms in deep-diving marine mammals
An interest in plausible mechanisms for significant acoustic impact on some species of marine mammals at receive levels significantly below that currently anticipated to cause direct physical trauma has arisen in response to questions of how the operation of sonars may have contributed to mass beaching events of beaked whales. Resonance in cavities and other specific structures was at one time proposed as a mechanism, but after some scrutiny this now appears unlikely. Rectified diffusion was posed as another candidate, but has been demonstrated to be significant only at relatively high pressure levels, exceeding receive levels anticipated in observed beaching circumstances. We examine an alternative proposition; that pre-existing micro-bubbles that are normally stabilized and which do not normally permit gas exchange across their walls can be acoustically activated so that continued growth is supported through static diffusion from super-saturated tissues in the absence of an acoustic field. The proposed mechanism would explain why micro bubbles (believed to be normally present in mammalian tissues) do not grow and cause decompression sickness (DCS) in healthy deep divers with super-saturated tissues, why these micro bubbles do not collapse under the Laplace pressure exerted by surface tension in unsaturated tissues, and why long-duration, deep diving cetaceans such as beaked whales appear to be particularly vulnerable to anthropogenic acoustic exposures. Numerical results for bubble growth modelled according to the treatments of Crum and Mao under tissue super-saturations of 200-300% (an appropriate range for deep-diving marine mammals on surfacing) show that if micro-bubble gas exchange could be activated acoustically, even by only a very brief exposure, this would result in subsequent bubble growth by static gas diffusion so that within 10 minutes their size would be sufficient to cause symptoms of decompression sickness (DCS)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信