弥合识别级预训练和常识视觉语言任务之间的差距

Yue Wan, Yueen Ma, Haoxuan You, Zhecan Wang, Shih-Fu Chang
{"title":"弥合识别级预训练和常识视觉语言任务之间的差距","authors":"Yue Wan, Yueen Ma, Haoxuan You, Zhecan Wang, Shih-Fu Chang","doi":"10.18653/v1/2022.csrr-1.4","DOIUrl":null,"url":null,"abstract":"Large-scale visual-linguistic pre-training aims to capture the generic representations from multimodal features, which are essential for downstream vision-language tasks. Existing methods mostly focus on learning the semantic connections between visual objects and linguistic content, which tend to be recognitionlevel information and may not be sufficient for commonsensical reasoning tasks like VCR. In this paper, we propose a novel commonsensical vision-language pre-training framework to bridge the gap. We first augment the conventional image-caption pre-training datasets with commonsense inferences from a visuallinguistic GPT-2. To pre-train models on image, caption and commonsense inferences together, we propose two new tasks: masked commonsense modeling (MCM) and commonsense type prediction (CTP). To reduce the shortcut effect between captions and commonsense inferences, we further introduce the domain-wise adaptive masking that dynamically adjusts the masking ratio. Experimental results on downstream tasks, VCR and VQA, show the improvement of our pre-training strategy over previous methods. Human evaluation also validates the relevance, informativeness, and diversity of the generated commonsense inferences. Overall, we demonstrate the potential of incorporating commonsense knowledge into the conventional recognition-level visual-linguistic pre-training.","PeriodicalId":166496,"journal":{"name":"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the Gap between Recognition-level Pre-training and Commonsensical Vision-language Tasks\",\"authors\":\"Yue Wan, Yueen Ma, Haoxuan You, Zhecan Wang, Shih-Fu Chang\",\"doi\":\"10.18653/v1/2022.csrr-1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale visual-linguistic pre-training aims to capture the generic representations from multimodal features, which are essential for downstream vision-language tasks. Existing methods mostly focus on learning the semantic connections between visual objects and linguistic content, which tend to be recognitionlevel information and may not be sufficient for commonsensical reasoning tasks like VCR. In this paper, we propose a novel commonsensical vision-language pre-training framework to bridge the gap. We first augment the conventional image-caption pre-training datasets with commonsense inferences from a visuallinguistic GPT-2. To pre-train models on image, caption and commonsense inferences together, we propose two new tasks: masked commonsense modeling (MCM) and commonsense type prediction (CTP). To reduce the shortcut effect between captions and commonsense inferences, we further introduce the domain-wise adaptive masking that dynamically adjusts the masking ratio. Experimental results on downstream tasks, VCR and VQA, show the improvement of our pre-training strategy over previous methods. Human evaluation also validates the relevance, informativeness, and diversity of the generated commonsense inferences. Overall, we demonstrate the potential of incorporating commonsense knowledge into the conventional recognition-level visual-linguistic pre-training.\",\"PeriodicalId\":166496,\"journal\":{\"name\":\"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.csrr-1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.csrr-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大规模的视觉语言预训练旨在从多模态特征中捕获通用表征,这对下游的视觉语言任务至关重要。现有的方法主要集中在学习视觉对象和语言内容之间的语义联系,这往往是识别级的信息,可能不足以完成像VCR这样的常识推理任务。在本文中,我们提出了一个新的常识性视觉语言预训练框架来弥补这一差距。我们首先用来自视觉语言学GPT-2的常识性推断来增强传统的图像标题预训练数据集。为了同时对图像、标题和常识推理进行预训练,我们提出了两个新的任务:掩模常识建模(MCM)和常识类型预测(CTP)。为了减少标题和常识推理之间的捷径效应,我们进一步引入了动态调整掩蔽比的领域自适应掩蔽。在下游任务VCR和VQA上的实验结果表明,我们的预训练策略比以前的方法有了改进。人工评估还验证生成的常识性推理的相关性、信息量和多样性。总的来说,我们展示了将常识知识纳入传统识别级视觉语言预训练的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging the Gap between Recognition-level Pre-training and Commonsensical Vision-language Tasks
Large-scale visual-linguistic pre-training aims to capture the generic representations from multimodal features, which are essential for downstream vision-language tasks. Existing methods mostly focus on learning the semantic connections between visual objects and linguistic content, which tend to be recognitionlevel information and may not be sufficient for commonsensical reasoning tasks like VCR. In this paper, we propose a novel commonsensical vision-language pre-training framework to bridge the gap. We first augment the conventional image-caption pre-training datasets with commonsense inferences from a visuallinguistic GPT-2. To pre-train models on image, caption and commonsense inferences together, we propose two new tasks: masked commonsense modeling (MCM) and commonsense type prediction (CTP). To reduce the shortcut effect between captions and commonsense inferences, we further introduce the domain-wise adaptive masking that dynamically adjusts the masking ratio. Experimental results on downstream tasks, VCR and VQA, show the improvement of our pre-training strategy over previous methods. Human evaluation also validates the relevance, informativeness, and diversity of the generated commonsense inferences. Overall, we demonstrate the potential of incorporating commonsense knowledge into the conventional recognition-level visual-linguistic pre-training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信