一种改进最小二乘双支持向量机的增量学习算法

Ling Yang, Kai Liu, Xiaodong Liang, Tao Ma
{"title":"一种改进最小二乘双支持向量机的增量学习算法","authors":"Ling Yang, Kai Liu, Xiaodong Liang, Tao Ma","doi":"10.1109/ICACI.2012.6463207","DOIUrl":null,"url":null,"abstract":"In this paper, we mainly propose an incremental version of improved least squares twin support vector machine (IILSTSVM), based on inverse matrix-free method. This algorithm can meet the requirement of online learning to update the existing model. In the case of low dimension data, this method effectively improves training speed of incremental learning. According to updating inverse matrix, we can implement the incremental learning for ILSTSVM. Experiments prove that this algorithm has excellent performance on runtime and recognition rate in the low dimensional space.","PeriodicalId":404759,"journal":{"name":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An incremental learning algorithm for improved least squares twin support vector machine\",\"authors\":\"Ling Yang, Kai Liu, Xiaodong Liang, Tao Ma\",\"doi\":\"10.1109/ICACI.2012.6463207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we mainly propose an incremental version of improved least squares twin support vector machine (IILSTSVM), based on inverse matrix-free method. This algorithm can meet the requirement of online learning to update the existing model. In the case of low dimension data, this method effectively improves training speed of incremental learning. According to updating inverse matrix, we can implement the incremental learning for ILSTSVM. Experiments prove that this algorithm has excellent performance on runtime and recognition rate in the low dimensional space.\",\"PeriodicalId\":404759,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2012.6463207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2012.6463207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要提出了一种基于无逆矩阵方法的增量版改进最小二乘双支持向量机(IILSTSVM)。该算法可以满足在线学习对已有模型进行更新的要求。在低维数据的情况下,该方法有效提高了增量学习的训练速度。通过对逆矩阵的更新,实现对ILSTSVM的增量学习。实验证明,该算法在低维空间中具有良好的运行时间和识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An incremental learning algorithm for improved least squares twin support vector machine
In this paper, we mainly propose an incremental version of improved least squares twin support vector machine (IILSTSVM), based on inverse matrix-free method. This algorithm can meet the requirement of online learning to update the existing model. In the case of low dimension data, this method effectively improves training speed of incremental learning. According to updating inverse matrix, we can implement the incremental learning for ILSTSVM. Experiments prove that this algorithm has excellent performance on runtime and recognition rate in the low dimensional space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信