未来全电动船舶系统级热建模与混合动力系统协同仿真

R. Fang, Wei-Zhe Jiang, J. Khan, R. Dougal
{"title":"未来全电动船舶系统级热建模与混合动力系统协同仿真","authors":"R. Fang, Wei-Zhe Jiang, J. Khan, R. Dougal","doi":"10.1109/ESTS.2009.4906565","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to performing thermal-electrical coupled co-simulation of hybrid power system and cooling system of future all-electric Navy ships. The goal is to study the transient interactions between the electrical and the thermal sub-systems. The approach utilizes an existing solid oxide fuel cell (SOFC) /gas turbine (GT) hybrid electrical power model and the ship cooling system model developed on the virtual test bed (VTB) platform at University of South Carolina. The integrated system simulation approach merges the thermal modeling capacity with the electrical modeling capacity in the same platform. The paper first briefly discusses the dynamic SOFC / GT hybrid engine system combined with propulsion plant model. It then describes ship cooling system model and the interactions between the electrical and the thermal sub-systems. A simple application scenario has been implemented and analyzed to illustrate the simulation. Dynamic responses of coupled thermal-electrical systems are explored under a step change of the service load to reveal important system interactions.","PeriodicalId":446953,"journal":{"name":"2009 IEEE Electric Ship Technologies Symposium","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"System-level thermal modeling and co-simulation with hybrid power system for future all electric ship\",\"authors\":\"R. Fang, Wei-Zhe Jiang, J. Khan, R. Dougal\",\"doi\":\"10.1109/ESTS.2009.4906565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to performing thermal-electrical coupled co-simulation of hybrid power system and cooling system of future all-electric Navy ships. The goal is to study the transient interactions between the electrical and the thermal sub-systems. The approach utilizes an existing solid oxide fuel cell (SOFC) /gas turbine (GT) hybrid electrical power model and the ship cooling system model developed on the virtual test bed (VTB) platform at University of South Carolina. The integrated system simulation approach merges the thermal modeling capacity with the electrical modeling capacity in the same platform. The paper first briefly discusses the dynamic SOFC / GT hybrid engine system combined with propulsion plant model. It then describes ship cooling system model and the interactions between the electrical and the thermal sub-systems. A simple application scenario has been implemented and analyzed to illustrate the simulation. Dynamic responses of coupled thermal-electrical systems are explored under a step change of the service load to reveal important system interactions.\",\"PeriodicalId\":446953,\"journal\":{\"name\":\"2009 IEEE Electric Ship Technologies Symposium\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Electric Ship Technologies Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2009.4906565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Electric Ship Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2009.4906565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

提出了一种对未来海军全电动舰船的混合动力系统和冷却系统进行热电耦合联合仿真的方法。目的是研究电子系统和热子系统之间的瞬态相互作用。该方法利用了现有的固体氧化物燃料电池(SOFC) /燃气轮机(GT)混合动力模型和在南卡罗莱纳大学虚拟试验台(VTB)平台上开发的船舶冷却系统模型。集成系统仿真方法将热建模能力和电建模能力融合在同一个平台上。本文首先结合推进装置模型对SOFC / GT混合动力发动机系统进行了简要讨论。然后介绍了船舶冷却系统模型以及电气和热力子系统之间的相互作用。实现了一个简单的应用场景,并对其进行了分析。研究了热电耦合系统在服务负荷阶跃变化下的动态响应,揭示了重要的系统相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System-level thermal modeling and co-simulation with hybrid power system for future all electric ship
This paper presents an approach to performing thermal-electrical coupled co-simulation of hybrid power system and cooling system of future all-electric Navy ships. The goal is to study the transient interactions between the electrical and the thermal sub-systems. The approach utilizes an existing solid oxide fuel cell (SOFC) /gas turbine (GT) hybrid electrical power model and the ship cooling system model developed on the virtual test bed (VTB) platform at University of South Carolina. The integrated system simulation approach merges the thermal modeling capacity with the electrical modeling capacity in the same platform. The paper first briefly discusses the dynamic SOFC / GT hybrid engine system combined with propulsion plant model. It then describes ship cooling system model and the interactions between the electrical and the thermal sub-systems. A simple application scenario has been implemented and analyzed to illustrate the simulation. Dynamic responses of coupled thermal-electrical systems are explored under a step change of the service load to reveal important system interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信