正则理想语言中原子的商复杂度

J. Brzozowski, Sylvie Davies
{"title":"正则理想语言中原子的商复杂度","authors":"J. Brzozowski, Sylvie Davies","doi":"10.14232/actacyb.22.2.2015.4","DOIUrl":null,"url":null,"abstract":"A (left) quotient of a language $L$ by a word $w$ is the language $w^{-1}L=\\{x\\mid wx\\in L\\}$. The quotient complexity of a regular language $L$ is the number of quotients of $L$; it is equal to the state complexity of $L$, which is the number of states in a minimal deterministic finite automaton accepting $L$. An atom of $L$ is an equivalence class of the relation in which two words are equivalent if for each quotient, they either are both in the quotient or both not in it; hence it is a non-empty intersection of complemented and uncomplemented quotients of $L$. A right (respectively, left and two-sided) ideal is a language $L$ over an alphabet $\\Sigma$ that satisfies $L=L\\Sigma^*$ (respectively, $L=\\Sigma^*L$ and $L=\\Sigma^*L\\Sigma^*$). We compute the maximal number of atoms and the maximal quotient complexities of atoms of right, left and two-sided regular ideals.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Quotient Complexities of Atoms in Regular Ideal Languages\",\"authors\":\"J. Brzozowski, Sylvie Davies\",\"doi\":\"10.14232/actacyb.22.2.2015.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A (left) quotient of a language $L$ by a word $w$ is the language $w^{-1}L=\\\\{x\\\\mid wx\\\\in L\\\\}$. The quotient complexity of a regular language $L$ is the number of quotients of $L$; it is equal to the state complexity of $L$, which is the number of states in a minimal deterministic finite automaton accepting $L$. An atom of $L$ is an equivalence class of the relation in which two words are equivalent if for each quotient, they either are both in the quotient or both not in it; hence it is a non-empty intersection of complemented and uncomplemented quotients of $L$. A right (respectively, left and two-sided) ideal is a language $L$ over an alphabet $\\\\Sigma$ that satisfies $L=L\\\\Sigma^*$ (respectively, $L=\\\\Sigma^*L$ and $L=\\\\Sigma^*L\\\\Sigma^*$). We compute the maximal number of atoms and the maximal quotient complexities of atoms of right, left and two-sided regular ideals.\",\"PeriodicalId\":187125,\"journal\":{\"name\":\"Acta Cybern.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/actacyb.22.2.2015.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/actacyb.22.2.2015.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

语言$L$除以单词$w$的(左)商是语言$w^{-1}L=\{x\mid wx\in L\}$。正则语言的商复杂度$L$是$L$的商的个数;它等于$L$的状态复杂度,即接受$L$的最小确定性有限自动机的状态数。$L$的原子是这样一种关系的等价类:对于每个商,两个词要么都在商中,要么都不在商中,那么它们是等价的;因此,它是$L$的补商与未补商的非空交集。理想的右(分别是,左和双面)是一种语言$L$,它基于满足$L=L\Sigma^*$(分别是$L=\Sigma^*L$和$L=\Sigma^*L\Sigma^*$)的字母$\Sigma$。我们计算了右、左、双边正则理想的最大原子数和最大原子商复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quotient Complexities of Atoms in Regular Ideal Languages
A (left) quotient of a language $L$ by a word $w$ is the language $w^{-1}L=\{x\mid wx\in L\}$. The quotient complexity of a regular language $L$ is the number of quotients of $L$; it is equal to the state complexity of $L$, which is the number of states in a minimal deterministic finite automaton accepting $L$. An atom of $L$ is an equivalence class of the relation in which two words are equivalent if for each quotient, they either are both in the quotient or both not in it; hence it is a non-empty intersection of complemented and uncomplemented quotients of $L$. A right (respectively, left and two-sided) ideal is a language $L$ over an alphabet $\Sigma$ that satisfies $L=L\Sigma^*$ (respectively, $L=\Sigma^*L$ and $L=\Sigma^*L\Sigma^*$). We compute the maximal number of atoms and the maximal quotient complexities of atoms of right, left and two-sided regular ideals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信