{"title":"HIV-1延迟感染数学模型的Hopf分岔","authors":"O. Bundau, A. Juratoni, A. Kovács","doi":"10.1109/SACI.2013.6608967","DOIUrl":null,"url":null,"abstract":"In this paper we consider the model with time delay from [7], which describe the dynamics of HIV-1 infection. This model presents a Hopf bifurcation. We determine the direction and stability of the bifurcating periodic solutions by applying the normal form theory and the center manifold theorem.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopf bifurcations in a mathematical model of HIV-1 infection with delay\",\"authors\":\"O. Bundau, A. Juratoni, A. Kovács\",\"doi\":\"10.1109/SACI.2013.6608967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the model with time delay from [7], which describe the dynamics of HIV-1 infection. This model presents a Hopf bifurcation. We determine the direction and stability of the bifurcating periodic solutions by applying the normal form theory and the center manifold theorem.\",\"PeriodicalId\":304729,\"journal\":{\"name\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2013.6608967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hopf bifurcations in a mathematical model of HIV-1 infection with delay
In this paper we consider the model with time delay from [7], which describe the dynamics of HIV-1 infection. This model presents a Hopf bifurcation. We determine the direction and stability of the bifurcating periodic solutions by applying the normal form theory and the center manifold theorem.