传感器金属厚度对单个粒子和生物细胞分析微波光谱灵敏度的影响

W. Chen, D. Dubuc, K. Grenier
{"title":"传感器金属厚度对单个粒子和生物细胞分析微波光谱灵敏度的影响","authors":"W. Chen, D. Dubuc, K. Grenier","doi":"10.1109/BIOWIRELESS.2016.7445568","DOIUrl":null,"url":null,"abstract":"This paper focuses on evaluating the impact of metal thickness of a microwave coplanar based sensor dedicated to the microwave dielectric spectroscopy of single particles and individual biological cells. A sensitivity study has therefore been achieved for metal thicknesses comprised between 0.3 and 20 μm. After the validation of electromagnetic simulations with measurements of 10 μ m-diameter polystyrene bead, both capacitive and conductive contrasts have been defined for the different metal thickness of the sensor. The maximal sensitivity improvement is therefore achieved for a thickness value similar to the diameter of the particle or cell to measure. Capacitive and conductive contrasts are increased by a factor 2.4 and 1.75 respectively. The study leads consequently to an important design and fabrication rule of such a sensor.","PeriodicalId":154090,"journal":{"name":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of sensor metal thickness on microwave spectroscopy sensitivity for individual particles and biological cells analysis\",\"authors\":\"W. Chen, D. Dubuc, K. Grenier\",\"doi\":\"10.1109/BIOWIRELESS.2016.7445568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on evaluating the impact of metal thickness of a microwave coplanar based sensor dedicated to the microwave dielectric spectroscopy of single particles and individual biological cells. A sensitivity study has therefore been achieved for metal thicknesses comprised between 0.3 and 20 μm. After the validation of electromagnetic simulations with measurements of 10 μ m-diameter polystyrene bead, both capacitive and conductive contrasts have been defined for the different metal thickness of the sensor. The maximal sensitivity improvement is therefore achieved for a thickness value similar to the diameter of the particle or cell to measure. Capacitive and conductive contrasts are increased by a factor 2.4 and 1.75 respectively. The study leads consequently to an important design and fabrication rule of such a sensor.\",\"PeriodicalId\":154090,\"journal\":{\"name\":\"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOWIRELESS.2016.7445568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOWIRELESS.2016.7445568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究了金属厚度对微波共面传感器单粒子和单个生物细胞微波介电光谱的影响。因此,对0.3 ~ 20 μm的金属厚度进行了灵敏度研究。通过测量直径为10 μ m的聚苯乙烯珠的电磁仿真验证,定义了不同金属厚度下传感器的电容性和导电性对比。因此,当厚度值与要测量的颗粒或细胞的直径相似时,可以实现最大的灵敏度改进。电容性和导电性对比度分别增加了2.4倍和1.75倍。由此得出了这种传感器设计和制造的重要准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of sensor metal thickness on microwave spectroscopy sensitivity for individual particles and biological cells analysis
This paper focuses on evaluating the impact of metal thickness of a microwave coplanar based sensor dedicated to the microwave dielectric spectroscopy of single particles and individual biological cells. A sensitivity study has therefore been achieved for metal thicknesses comprised between 0.3 and 20 μm. After the validation of electromagnetic simulations with measurements of 10 μ m-diameter polystyrene bead, both capacitive and conductive contrasts have been defined for the different metal thickness of the sensor. The maximal sensitivity improvement is therefore achieved for a thickness value similar to the diameter of the particle or cell to measure. Capacitive and conductive contrasts are increased by a factor 2.4 and 1.75 respectively. The study leads consequently to an important design and fabrication rule of such a sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信