{"title":"等式的参数化复杂度MinCSP","authors":"George Osipov, Magnus Wahlstrom","doi":"10.48550/arXiv.2305.11131","DOIUrl":null,"url":null,"abstract":"We study the parameterized complexity of MinCSP for so-called equality languages, i.e., for finite languages over an infinite domain such as $\\mathbb{N}$, where the relations are defined via first-order formulas whose only predicate is $=$. This is an important class of languages that forms the starting point of all study of infinite-domain CSPs under the commonly used approach pioneered by Bodirsky, i.e., languages defined as reducts of finitely bounded homogeneous structures. Moreover, MinCSP over equality languages forms a natural class of optimisation problems in its own right, covering such problems as Edge Multicut, Steiner Multicut and (under singleton expansion) Edge Multiway Cut. We classify MinCSP$(\\Gamma)$ for every finite equality language $\\Gamma$, under the natural parameter, as either FPT, W[1]-hard but admitting a constant-factor FPT-approximation, or not admitting a constant-factor FPT-approximation unless FPT=W[2]. In particular, we describe an FPT case that slightly generalises Multicut, and show a constant-factor FPT-approximation for Disjunctive Multicut, the generalisation of Multicut where the ``cut requests'' come as disjunctions over $d = O(1)$ individual cut requests $s_i \\neq t_i$. We also consider singleton expansions of equality languages, i.e., enriching an equality language with the capability for assignment constraints $(x=i)$ for either finitely or infinitely many constants $i \\in \\mathbb{N}$, and fully characterize the complexity of the resulting MinCSP.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parameterized Complexity of Equality MinCSP\",\"authors\":\"George Osipov, Magnus Wahlstrom\",\"doi\":\"10.48550/arXiv.2305.11131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the parameterized complexity of MinCSP for so-called equality languages, i.e., for finite languages over an infinite domain such as $\\\\mathbb{N}$, where the relations are defined via first-order formulas whose only predicate is $=$. This is an important class of languages that forms the starting point of all study of infinite-domain CSPs under the commonly used approach pioneered by Bodirsky, i.e., languages defined as reducts of finitely bounded homogeneous structures. Moreover, MinCSP over equality languages forms a natural class of optimisation problems in its own right, covering such problems as Edge Multicut, Steiner Multicut and (under singleton expansion) Edge Multiway Cut. We classify MinCSP$(\\\\Gamma)$ for every finite equality language $\\\\Gamma$, under the natural parameter, as either FPT, W[1]-hard but admitting a constant-factor FPT-approximation, or not admitting a constant-factor FPT-approximation unless FPT=W[2]. In particular, we describe an FPT case that slightly generalises Multicut, and show a constant-factor FPT-approximation for Disjunctive Multicut, the generalisation of Multicut where the ``cut requests'' come as disjunctions over $d = O(1)$ individual cut requests $s_i \\\\neq t_i$. We also consider singleton expansions of equality languages, i.e., enriching an equality language with the capability for assignment constraints $(x=i)$ for either finitely or infinitely many constants $i \\\\in \\\\mathbb{N}$, and fully characterize the complexity of the resulting MinCSP.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.11131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.11131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the parameterized complexity of MinCSP for so-called equality languages, i.e., for finite languages over an infinite domain such as $\mathbb{N}$, where the relations are defined via first-order formulas whose only predicate is $=$. This is an important class of languages that forms the starting point of all study of infinite-domain CSPs under the commonly used approach pioneered by Bodirsky, i.e., languages defined as reducts of finitely bounded homogeneous structures. Moreover, MinCSP over equality languages forms a natural class of optimisation problems in its own right, covering such problems as Edge Multicut, Steiner Multicut and (under singleton expansion) Edge Multiway Cut. We classify MinCSP$(\Gamma)$ for every finite equality language $\Gamma$, under the natural parameter, as either FPT, W[1]-hard but admitting a constant-factor FPT-approximation, or not admitting a constant-factor FPT-approximation unless FPT=W[2]. In particular, we describe an FPT case that slightly generalises Multicut, and show a constant-factor FPT-approximation for Disjunctive Multicut, the generalisation of Multicut where the ``cut requests'' come as disjunctions over $d = O(1)$ individual cut requests $s_i \neq t_i$. We also consider singleton expansions of equality languages, i.e., enriching an equality language with the capability for assignment constraints $(x=i)$ for either finitely or infinitely many constants $i \in \mathbb{N}$, and fully characterize the complexity of the resulting MinCSP.