基于神经网络的电动汽车推进系统DTC IM驱动

B. Singh, P. Jain, A. Mittal, J. Gupta
{"title":"基于神经网络的电动汽车推进系统DTC IM驱动","authors":"B. Singh, P. Jain, A. Mittal, J. Gupta","doi":"10.1109/ICEHV.2006.352276","DOIUrl":null,"url":null,"abstract":"This paper deals with a neural network based direct torque control (DTC) of an induction motor (IM) for electric vehicle (EV) propulsion system. In this scheme the traditional switching lookup table is replaced with a multi-layer neural network. The complete neural network (NN) based DTC scheme of IM drive is simulated using MATLAB. The obtained results demonstrate the effectiveness of the NN based DTC scheme of IM drive. The proposed NN based DTC scheme reduces torque and current ripples to a great extent in IM drive.","PeriodicalId":129674,"journal":{"name":"2006 IEEE Conference on Electric and Hybrid Vehicles","volume":"70 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Neural Network Based DTC IM Drive for Electric Vehicle Propulsion System\",\"authors\":\"B. Singh, P. Jain, A. Mittal, J. Gupta\",\"doi\":\"10.1109/ICEHV.2006.352276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a neural network based direct torque control (DTC) of an induction motor (IM) for electric vehicle (EV) propulsion system. In this scheme the traditional switching lookup table is replaced with a multi-layer neural network. The complete neural network (NN) based DTC scheme of IM drive is simulated using MATLAB. The obtained results demonstrate the effectiveness of the NN based DTC scheme of IM drive. The proposed NN based DTC scheme reduces torque and current ripples to a great extent in IM drive.\",\"PeriodicalId\":129674,\"journal\":{\"name\":\"2006 IEEE Conference on Electric and Hybrid Vehicles\",\"volume\":\"70 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Electric and Hybrid Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEHV.2006.352276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Electric and Hybrid Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEHV.2006.352276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

研究了一种基于神经网络的电动汽车推进系统异步电动机直接转矩控制方法。该方案采用多层神经网络代替传统的切换查找表。利用MATLAB对基于神经网络的IM驱动直接控制方案进行了仿真。仿真结果证明了基于神经网络的IM驱动直接转矩控制方案的有效性。提出的基于神经网络的直接转矩控制方案在很大程度上降低了IM驱动的转矩和电流波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Based DTC IM Drive for Electric Vehicle Propulsion System
This paper deals with a neural network based direct torque control (DTC) of an induction motor (IM) for electric vehicle (EV) propulsion system. In this scheme the traditional switching lookup table is replaced with a multi-layer neural network. The complete neural network (NN) based DTC scheme of IM drive is simulated using MATLAB. The obtained results demonstrate the effectiveness of the NN based DTC scheme of IM drive. The proposed NN based DTC scheme reduces torque and current ripples to a great extent in IM drive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信