{"title":"最大熵模型的否定消歧","authors":"Chunliang Zhang, Xiaoxu Fei, Jingbo Zhu","doi":"10.1109/NLPKE.2010.5587857","DOIUrl":null,"url":null,"abstract":"Handling negation issue is of great significance for sentiment analysis. Most previous studies adopted a simple heuristic rule for sentiment negation disambiguation within a fixed context window. In this paper we present a supervised method to disambiguate which sentiment word is attached to the negator such as “(not)” in an opinionated sentence. Experimental results show that our method can achieve better performance than traditional methods.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negation disambiguation using the maximum entropy model\",\"authors\":\"Chunliang Zhang, Xiaoxu Fei, Jingbo Zhu\",\"doi\":\"10.1109/NLPKE.2010.5587857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handling negation issue is of great significance for sentiment analysis. Most previous studies adopted a simple heuristic rule for sentiment negation disambiguation within a fixed context window. In this paper we present a supervised method to disambiguate which sentiment word is attached to the negator such as “(not)” in an opinionated sentence. Experimental results show that our method can achieve better performance than traditional methods.\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Negation disambiguation using the maximum entropy model
Handling negation issue is of great significance for sentiment analysis. Most previous studies adopted a simple heuristic rule for sentiment negation disambiguation within a fixed context window. In this paper we present a supervised method to disambiguate which sentiment word is attached to the negator such as “(not)” in an opinionated sentence. Experimental results show that our method can achieve better performance than traditional methods.