基于内容的图像检索,基于k均值和k近邻的多目标水果识别

Erwin, M. Fachrurrozi, Ahmad Fiqih, Bahardiansyah Rua Saputra, Rachmad Algani, Anggina Primanita
{"title":"基于内容的图像检索,基于k均值和k近邻的多目标水果识别","authors":"Erwin, M. Fachrurrozi, Ahmad Fiqih, Bahardiansyah Rua Saputra, Rachmad Algani, Anggina Primanita","doi":"10.1109/ICODSE.2017.8285855","DOIUrl":null,"url":null,"abstract":"The uniqueness of fruits can be observed using the colors and shapes. The fruit recognition process consists of 3 stages, namely feature extraction, clustering, and recognition. Each of stage uses different methods. The color extraction process using Fuzzy Color Histogram (FCH) method and shaping extraction using Moment Invariants (MI) method. The clustering process uses the K-Means Clustering Algorithm. The recognition process uses the k-NN method. The Content-Based Image Retrieval (CBIR) process uses image features (visual contents) to perform image searches from the database. Experimental results and analysis of fruit recognition system obtained an accuracy of 92.5% for single-object images and 90% for the multi-object image.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Content based image retrieval for multi-objects fruits recognition using k-means and k-nearest neighbor\",\"authors\":\"Erwin, M. Fachrurrozi, Ahmad Fiqih, Bahardiansyah Rua Saputra, Rachmad Algani, Anggina Primanita\",\"doi\":\"10.1109/ICODSE.2017.8285855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uniqueness of fruits can be observed using the colors and shapes. The fruit recognition process consists of 3 stages, namely feature extraction, clustering, and recognition. Each of stage uses different methods. The color extraction process using Fuzzy Color Histogram (FCH) method and shaping extraction using Moment Invariants (MI) method. The clustering process uses the K-Means Clustering Algorithm. The recognition process uses the k-NN method. The Content-Based Image Retrieval (CBIR) process uses image features (visual contents) to perform image searches from the database. Experimental results and analysis of fruit recognition system obtained an accuracy of 92.5% for single-object images and 90% for the multi-object image.\",\"PeriodicalId\":366005,\"journal\":{\"name\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICODSE.2017.8285855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

水果的独特性可以通过颜色和形状来观察。水果识别过程包括特征提取、聚类和识别三个阶段。每个阶段使用不同的方法。颜色提取过程采用模糊颜色直方图法(FCH),形状提取采用矩不变法(MI)。聚类过程使用K-Means聚类算法。识别过程使用k-NN方法。基于内容的图像检索(CBIR)过程使用图像特征(视觉内容)从数据库中执行图像搜索。实验结果和分析表明,该水果识别系统对单目标图像的识别准确率为92.5%,对多目标图像的识别准确率为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content based image retrieval for multi-objects fruits recognition using k-means and k-nearest neighbor
The uniqueness of fruits can be observed using the colors and shapes. The fruit recognition process consists of 3 stages, namely feature extraction, clustering, and recognition. Each of stage uses different methods. The color extraction process using Fuzzy Color Histogram (FCH) method and shaping extraction using Moment Invariants (MI) method. The clustering process uses the K-Means Clustering Algorithm. The recognition process uses the k-NN method. The Content-Based Image Retrieval (CBIR) process uses image features (visual contents) to perform image searches from the database. Experimental results and analysis of fruit recognition system obtained an accuracy of 92.5% for single-object images and 90% for the multi-object image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信