{"title":"基于化学反应优化的电动汽车V2G优化调度及机组承诺","authors":"J. Yu, V. Li, Albert Y. S. Lam","doi":"10.1109/CEC.2013.6557596","DOIUrl":null,"url":null,"abstract":"An electric vehicle (EV) may be used as energy storage which allows the bi-directional electricity flow between the vehicle's battery and the electric power grid. In order to flatten the load profile of the electricity system, EV scheduling has become a hot research topic in recent years. In this paper, we propose a new formulation of the joint scheduling of EV and Unit Commitment (UC), called EVUC. Our formulation considers the characteristics of EVs while optimizing the system total running cost. We employ Chemical Reaction Optimization (CRO), a general-purpose optimization algorithm to solve this problem and the simulation results on a widely used set of instances indicate that CRO can effectively optimize this problem.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Optimal V2G scheduling of electric vehicles and Unit Commitment using Chemical Reaction Optimization\",\"authors\":\"J. Yu, V. Li, Albert Y. S. Lam\",\"doi\":\"10.1109/CEC.2013.6557596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An electric vehicle (EV) may be used as energy storage which allows the bi-directional electricity flow between the vehicle's battery and the electric power grid. In order to flatten the load profile of the electricity system, EV scheduling has become a hot research topic in recent years. In this paper, we propose a new formulation of the joint scheduling of EV and Unit Commitment (UC), called EVUC. Our formulation considers the characteristics of EVs while optimizing the system total running cost. We employ Chemical Reaction Optimization (CRO), a general-purpose optimization algorithm to solve this problem and the simulation results on a widely used set of instances indicate that CRO can effectively optimize this problem.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal V2G scheduling of electric vehicles and Unit Commitment using Chemical Reaction Optimization
An electric vehicle (EV) may be used as energy storage which allows the bi-directional electricity flow between the vehicle's battery and the electric power grid. In order to flatten the load profile of the electricity system, EV scheduling has become a hot research topic in recent years. In this paper, we propose a new formulation of the joint scheduling of EV and Unit Commitment (UC), called EVUC. Our formulation considers the characteristics of EVs while optimizing the system total running cost. We employ Chemical Reaction Optimization (CRO), a general-purpose optimization algorithm to solve this problem and the simulation results on a widely used set of instances indicate that CRO can effectively optimize this problem.