分布式内存快速最大独立集

Thejaka Amila Kanewala, Marcin Zalewski, A. Lumsdaine
{"title":"分布式内存快速最大独立集","authors":"Thejaka Amila Kanewala, Marcin Zalewski, A. Lumsdaine","doi":"10.1109/HPEC.2017.8091032","DOIUrl":null,"url":null,"abstract":"The Maximal Independent Set (MIS) graph problem arises in many applications such as computer vision, information theory, molecular biology, and process scheduling. The growing scale of MIS problems suggests the use of distributed-memory hardware as a cost-effective approach to providing necessary compute and memory resources. Luby proposed four randomized algorithms to solve the MIS problem. All those algorithms are designed focusing on shared-memory machines and are analyzed using the PRAM model. These algorithms do not have direct efficient distributed-memory implementations. In this paper, we extend two of Luby's seminal MIS algorithms, \"Luby(A)\" and \"Luby(B),\" to distributed-memory execution, and we evaluate their performance. We compare our results with the \"Filtered MIS\" implementation in the Combinatorial BLAS library for two types of synthetic graph inputs.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed-memory fast maximal independent set\",\"authors\":\"Thejaka Amila Kanewala, Marcin Zalewski, A. Lumsdaine\",\"doi\":\"10.1109/HPEC.2017.8091032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Maximal Independent Set (MIS) graph problem arises in many applications such as computer vision, information theory, molecular biology, and process scheduling. The growing scale of MIS problems suggests the use of distributed-memory hardware as a cost-effective approach to providing necessary compute and memory resources. Luby proposed four randomized algorithms to solve the MIS problem. All those algorithms are designed focusing on shared-memory machines and are analyzed using the PRAM model. These algorithms do not have direct efficient distributed-memory implementations. In this paper, we extend two of Luby's seminal MIS algorithms, \\\"Luby(A)\\\" and \\\"Luby(B),\\\" to distributed-memory execution, and we evaluate their performance. We compare our results with the \\\"Filtered MIS\\\" implementation in the Combinatorial BLAS library for two types of synthetic graph inputs.\",\"PeriodicalId\":364903,\"journal\":{\"name\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2017.8091032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

极大独立集(MIS)图问题在计算机视觉、信息论、分子生物学和过程调度等领域有广泛的应用。管理信息系统问题的规模日益扩大,这表明使用分布式内存硬件作为提供必要的计算和内存资源的一种经济有效的方法。Luby提出了四种随机算法来解决MIS问题。所有这些算法都是围绕共享内存机器设计的,并使用PRAM模型进行了分析。这些算法没有直接高效的分布式内存实现。在本文中,我们将Luby的两个开创性的MIS算法“Luby(A)”和“Luby(B)”扩展到分布式内存执行,并评估了它们的性能。对于两种类型的合成图输入,我们将我们的结果与组合BLAS库中的“过滤MIS”实现进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed-memory fast maximal independent set
The Maximal Independent Set (MIS) graph problem arises in many applications such as computer vision, information theory, molecular biology, and process scheduling. The growing scale of MIS problems suggests the use of distributed-memory hardware as a cost-effective approach to providing necessary compute and memory resources. Luby proposed four randomized algorithms to solve the MIS problem. All those algorithms are designed focusing on shared-memory machines and are analyzed using the PRAM model. These algorithms do not have direct efficient distributed-memory implementations. In this paper, we extend two of Luby's seminal MIS algorithms, "Luby(A)" and "Luby(B)," to distributed-memory execution, and we evaluate their performance. We compare our results with the "Filtered MIS" implementation in the Combinatorial BLAS library for two types of synthetic graph inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信