通信、雷达和无线电监测机载系统微波光子收发信道设计的特点

I. V. Unchenko, A. A. Emelyanov
{"title":"通信、雷达和无线电监测机载系统微波光子收发信道设计的特点","authors":"I. V. Unchenko, A. A. Emelyanov","doi":"10.32603/1993-8985-2023-26-1-58-67","DOIUrl":null,"url":null,"abstract":"Introduction. Designers of modern on-board systems for communication, radar, and radio monitoring face the problem of improving their qualitative characteristics, including the operating frequency, instantaneous bandwidth, receiver sensitivity, and electromagnetic compatibility. In addition, the dimensions, weight, and power of such systems, as well their cost, should be minimized. However, the current semiconductor microwave electronics has reached its limits in terms of frequency and dynamic characteristics. A possible solution consists in the implementation of microwave photonic transmission lines in the design of on-board systems for communication, radar, and radio monitoring on the basis of modulation of laser radiation by means of electro-absorption.Aim. To study the transfer characteristics and noise figure of a microwave photonic transmission line realized based on the modulation of laser radiation by means of electro-absorption. To compare the results of theoretical calculations and experimental investigations.Materials and methods. The research methodology involved external modulation using an electro-absorption modulator (EAM), mathematical representation of the transmission coefficient, as well as comparison of the theoretical and practical results.Results. Theoretical values of the transmission coefficient and noise figure for a microwave photonic transmission line based on the external modulation method using an EAM were obtained. Experimental values of the transmission coefficient and noise figure for a microwave photonic line in the frequency range from 100 MHz to 16 GHz were presented. The obtained data were compared with those of the nearest mass-produced products of foreign production and those presented in domestic publications on microwave photonic signal transmission lines.Conclusion. The use of an EAM, whose main advantage consists in the possibility of integration with a laser emitter, allowed the authors to design and manufacture a small-sized industrial prototype of a radio-photonic transceiver, capable of transmitting a radio signal over tens of kilometers in the frequency range from 100 MHz to 12 GHz with a transmission coefficient of at least −3 dB and a noise figure no more than 36 dB at the upper operating frequency. At the same time, the closest analogue manufactured by Emcore with similar dimensions has a transmission coefficient of −30 dB and uses direct modulation of laser radiation as a transmission method, which significantly reduces the transmission range of the microwave signal.","PeriodicalId":217555,"journal":{"name":"Journal of the Russian Universities. Radioelectronics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specific Features of Designing Microwave Photonic Receiving and Transmitting Channels of Onboard Systems for Communication, Radar and Radio Monitoring\",\"authors\":\"I. V. Unchenko, A. A. Emelyanov\",\"doi\":\"10.32603/1993-8985-2023-26-1-58-67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Designers of modern on-board systems for communication, radar, and radio monitoring face the problem of improving their qualitative characteristics, including the operating frequency, instantaneous bandwidth, receiver sensitivity, and electromagnetic compatibility. In addition, the dimensions, weight, and power of such systems, as well their cost, should be minimized. However, the current semiconductor microwave electronics has reached its limits in terms of frequency and dynamic characteristics. A possible solution consists in the implementation of microwave photonic transmission lines in the design of on-board systems for communication, radar, and radio monitoring on the basis of modulation of laser radiation by means of electro-absorption.Aim. To study the transfer characteristics and noise figure of a microwave photonic transmission line realized based on the modulation of laser radiation by means of electro-absorption. To compare the results of theoretical calculations and experimental investigations.Materials and methods. The research methodology involved external modulation using an electro-absorption modulator (EAM), mathematical representation of the transmission coefficient, as well as comparison of the theoretical and practical results.Results. Theoretical values of the transmission coefficient and noise figure for a microwave photonic transmission line based on the external modulation method using an EAM were obtained. Experimental values of the transmission coefficient and noise figure for a microwave photonic line in the frequency range from 100 MHz to 16 GHz were presented. The obtained data were compared with those of the nearest mass-produced products of foreign production and those presented in domestic publications on microwave photonic signal transmission lines.Conclusion. The use of an EAM, whose main advantage consists in the possibility of integration with a laser emitter, allowed the authors to design and manufacture a small-sized industrial prototype of a radio-photonic transceiver, capable of transmitting a radio signal over tens of kilometers in the frequency range from 100 MHz to 12 GHz with a transmission coefficient of at least −3 dB and a noise figure no more than 36 dB at the upper operating frequency. At the same time, the closest analogue manufactured by Emcore with similar dimensions has a transmission coefficient of −30 dB and uses direct modulation of laser radiation as a transmission method, which significantly reduces the transmission range of the microwave signal.\",\"PeriodicalId\":217555,\"journal\":{\"name\":\"Journal of the Russian Universities. Radioelectronics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Russian Universities. Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32603/1993-8985-2023-26-1-58-67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Russian Universities. Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32603/1993-8985-2023-26-1-58-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍。现代机载通信、雷达和无线电监测系统的设计者面临着改进其定性特性的问题,包括工作频率、瞬时带宽、接收机灵敏度和电磁兼容性。此外,这种系统的尺寸、重量和功率以及成本都应该最小化。然而,目前的半导体微波电子学在频率和动态特性方面已经达到了极限。一种可能的解决方案是在利用电吸收调制激光辐射的基础上,在机载通信、雷达和无线电监测系统的设计中实现微波光子传输线。研究了利用电吸收调制激光辐射实现的微波光子传输线的传输特性和噪声系数。将理论计算结果与实验研究结果进行比较。材料和方法。研究方法包括使用电吸收调制器(EAM)进行外部调制,传输系数的数学表示,以及理论和实际结果的比较。得到了基于EAM外调制方法的微波光子传输线的传输系数和噪声系数的理论值。给出了100 ~ 16 GHz频率范围内微波光子线的透射系数和噪声系数的实验值。并将所得数据与国外最近量产产品和国内有关微波光子信号传输线的文献资料进行了比较。使用EAM的主要优点在于可以与激光发射器集成,使作者能够设计和制造小型无线电光子收发器的工业原型,能够在100 MHz至12 GHz的频率范围内传输数十公里以上的无线电信号,传输系数至少为- 3 dB,噪声系数不超过36 dB在工作频率上。同时,Emcore制造的尺寸相近的最接近的模拟物的传输系数为−30 dB,并且采用激光辐射的直接调制作为传输方式,这大大减小了微波信号的传输范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Specific Features of Designing Microwave Photonic Receiving and Transmitting Channels of Onboard Systems for Communication, Radar and Radio Monitoring
Introduction. Designers of modern on-board systems for communication, radar, and radio monitoring face the problem of improving their qualitative characteristics, including the operating frequency, instantaneous bandwidth, receiver sensitivity, and electromagnetic compatibility. In addition, the dimensions, weight, and power of such systems, as well their cost, should be minimized. However, the current semiconductor microwave electronics has reached its limits in terms of frequency and dynamic characteristics. A possible solution consists in the implementation of microwave photonic transmission lines in the design of on-board systems for communication, radar, and radio monitoring on the basis of modulation of laser radiation by means of electro-absorption.Aim. To study the transfer characteristics and noise figure of a microwave photonic transmission line realized based on the modulation of laser radiation by means of electro-absorption. To compare the results of theoretical calculations and experimental investigations.Materials and methods. The research methodology involved external modulation using an electro-absorption modulator (EAM), mathematical representation of the transmission coefficient, as well as comparison of the theoretical and practical results.Results. Theoretical values of the transmission coefficient and noise figure for a microwave photonic transmission line based on the external modulation method using an EAM were obtained. Experimental values of the transmission coefficient and noise figure for a microwave photonic line in the frequency range from 100 MHz to 16 GHz were presented. The obtained data were compared with those of the nearest mass-produced products of foreign production and those presented in domestic publications on microwave photonic signal transmission lines.Conclusion. The use of an EAM, whose main advantage consists in the possibility of integration with a laser emitter, allowed the authors to design and manufacture a small-sized industrial prototype of a radio-photonic transceiver, capable of transmitting a radio signal over tens of kilometers in the frequency range from 100 MHz to 12 GHz with a transmission coefficient of at least −3 dB and a noise figure no more than 36 dB at the upper operating frequency. At the same time, the closest analogue manufactured by Emcore with similar dimensions has a transmission coefficient of −30 dB and uses direct modulation of laser radiation as a transmission method, which significantly reduces the transmission range of the microwave signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信