David Becerra, A. Sandoval, Daniel Restrepo-Montoya, L. F. Niño
{"title":"蛋白质结构预测的并行多目标从头算方法","authors":"David Becerra, A. Sandoval, Daniel Restrepo-Montoya, L. F. Niño","doi":"10.1109/BIBM.2010.5706552","DOIUrl":null,"url":null,"abstract":"Protein structure prediction is one of the most important problems in bioinformatics and structural biology. This work proposes a novel and suitable methodology to model protein structure prediction with atomic-level detail by using a parallel multi-objective ab initio approach. In the proposed model, i) A trigonometric representation is used to compute backbone and side-chain torsion angles of protein atoms; ii) The Chemistry at HARvard Macromolecular Mechanics (CHARMm) function optimizes and evaluates the structures of the protein conformations; iii) The evolution of protein conformations is directed by optimization of protein energy contributions using the multi-objective genetic algorithm NSGA-II; and iv) The computation process is sped up and its effectiveness improved through the implementation of an island model of the evolutionary algorithm. The proposed model was validated on a set of benchmark proteins obtaining very promising results.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A parallel multi-objective ab initio approach for protein structure prediction\",\"authors\":\"David Becerra, A. Sandoval, Daniel Restrepo-Montoya, L. F. Niño\",\"doi\":\"10.1109/BIBM.2010.5706552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein structure prediction is one of the most important problems in bioinformatics and structural biology. This work proposes a novel and suitable methodology to model protein structure prediction with atomic-level detail by using a parallel multi-objective ab initio approach. In the proposed model, i) A trigonometric representation is used to compute backbone and side-chain torsion angles of protein atoms; ii) The Chemistry at HARvard Macromolecular Mechanics (CHARMm) function optimizes and evaluates the structures of the protein conformations; iii) The evolution of protein conformations is directed by optimization of protein energy contributions using the multi-objective genetic algorithm NSGA-II; and iv) The computation process is sped up and its effectiveness improved through the implementation of an island model of the evolutionary algorithm. The proposed model was validated on a set of benchmark proteins obtaining very promising results.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A parallel multi-objective ab initio approach for protein structure prediction
Protein structure prediction is one of the most important problems in bioinformatics and structural biology. This work proposes a novel and suitable methodology to model protein structure prediction with atomic-level detail by using a parallel multi-objective ab initio approach. In the proposed model, i) A trigonometric representation is used to compute backbone and side-chain torsion angles of protein atoms; ii) The Chemistry at HARvard Macromolecular Mechanics (CHARMm) function optimizes and evaluates the structures of the protein conformations; iii) The evolution of protein conformations is directed by optimization of protein energy contributions using the multi-objective genetic algorithm NSGA-II; and iv) The computation process is sped up and its effectiveness improved through the implementation of an island model of the evolutionary algorithm. The proposed model was validated on a set of benchmark proteins obtaining very promising results.