用于微创干预的可展开张拉整体微型机器人

S. Yuan, Wuming Jing, Hao Jiang
{"title":"用于微创干预的可展开张拉整体微型机器人","authors":"S. Yuan, Wuming Jing, Hao Jiang","doi":"10.1115/imece2021-67009","DOIUrl":null,"url":null,"abstract":"\n Micro-, and milli-scale robots have emerged as next generation of intelligent technology for minimally invasive diagnosis and treatment. Recent minimally invasive interventions call for robots that work as tiny “surgeons” or drug delivery “vehicles” to achieve inner body diagnostic, surgical, and therapeutic practices, without any trauma or discomfort. Most traditional medical robots are large, and lack effective locomotion design, which prevent them from entering small entrances and moving smoothly in small working areas, such as long and narrow passages. Presented in this paper is a design of an innovative milli-scale deployable tensegrity microrobot for minimally invasive interventions. The robot is made of a deployable tensegrity structure integrated by self-stress. A folded size of the robot is small for easily entering a desired working area with a small entrance. When deployed, the tensegrity body of the robot displays lightweight and high stiffness to sustain loads and prevent damages when burrowing through tightly packed tissues or high-pressure environments. Locomotion of the tensegrity microrobot is designed to mimic a crawling motion of an earthworm, which grants the robot an ability to move well through small working areas. The robot is also an untethered agent. Morphing for deployment and locomotion of the robot is actuated by magnetic forces generated by its active members that serve as electromagnetic coils.","PeriodicalId":314012,"journal":{"name":"Volume 5: Biomedical and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deployable Tensegrity Microrobot for Minimally Invasive Interventions\",\"authors\":\"S. Yuan, Wuming Jing, Hao Jiang\",\"doi\":\"10.1115/imece2021-67009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Micro-, and milli-scale robots have emerged as next generation of intelligent technology for minimally invasive diagnosis and treatment. Recent minimally invasive interventions call for robots that work as tiny “surgeons” or drug delivery “vehicles” to achieve inner body diagnostic, surgical, and therapeutic practices, without any trauma or discomfort. Most traditional medical robots are large, and lack effective locomotion design, which prevent them from entering small entrances and moving smoothly in small working areas, such as long and narrow passages. Presented in this paper is a design of an innovative milli-scale deployable tensegrity microrobot for minimally invasive interventions. The robot is made of a deployable tensegrity structure integrated by self-stress. A folded size of the robot is small for easily entering a desired working area with a small entrance. When deployed, the tensegrity body of the robot displays lightweight and high stiffness to sustain loads and prevent damages when burrowing through tightly packed tissues or high-pressure environments. Locomotion of the tensegrity microrobot is designed to mimic a crawling motion of an earthworm, which grants the robot an ability to move well through small working areas. The robot is also an untethered agent. Morphing for deployment and locomotion of the robot is actuated by magnetic forces generated by its active members that serve as electromagnetic coils.\",\"PeriodicalId\":314012,\"journal\":{\"name\":\"Volume 5: Biomedical and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Biomedical and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-67009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Biomedical and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-67009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

微型和毫米级的机器人已经成为用于微创诊断和治疗的下一代智能技术。最近的微创干预需要机器人作为微型“外科医生”或药物输送“载体”来实现身体内部的诊断、手术和治疗,而不会造成任何创伤或不适。传统的医疗机器人大多体型庞大,缺乏有效的运动设计,无法进入狭小的入口,也无法在狭长的通道等狭小的工作区域顺利移动。本文介绍了一种用于微创干预的创新毫米尺度可展开张拉整体微型机器人的设计。该机器人由可展开的张拉整体结构组成,由自应力集成而成。该机器人的折叠尺寸较小,易于进入所需的工作区域,入口较小。当展开时,机器人的张拉整体体显示出轻质和高刚度,以承受载荷并防止在紧密组织或高压环境中挖掘时损坏。张拉整体微型机器人的运动被设计成模仿蚯蚓的爬行运动,这使机器人能够在小的工作区域内很好地移动。这个机器人也是一个不受束缚的代理人。机器人的变形部署和运动是由其主动成员作为电磁线圈产生的磁力驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deployable Tensegrity Microrobot for Minimally Invasive Interventions
Micro-, and milli-scale robots have emerged as next generation of intelligent technology for minimally invasive diagnosis and treatment. Recent minimally invasive interventions call for robots that work as tiny “surgeons” or drug delivery “vehicles” to achieve inner body diagnostic, surgical, and therapeutic practices, without any trauma or discomfort. Most traditional medical robots are large, and lack effective locomotion design, which prevent them from entering small entrances and moving smoothly in small working areas, such as long and narrow passages. Presented in this paper is a design of an innovative milli-scale deployable tensegrity microrobot for minimally invasive interventions. The robot is made of a deployable tensegrity structure integrated by self-stress. A folded size of the robot is small for easily entering a desired working area with a small entrance. When deployed, the tensegrity body of the robot displays lightweight and high stiffness to sustain loads and prevent damages when burrowing through tightly packed tissues or high-pressure environments. Locomotion of the tensegrity microrobot is designed to mimic a crawling motion of an earthworm, which grants the robot an ability to move well through small working areas. The robot is also an untethered agent. Morphing for deployment and locomotion of the robot is actuated by magnetic forces generated by its active members that serve as electromagnetic coils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信