一种新的目标检测特征金字塔网络

Yongqiang Zhao, Rui Han, Y. Rao
{"title":"一种新的目标检测特征金字塔网络","authors":"Yongqiang Zhao, Rui Han, Y. Rao","doi":"10.1109/ICVRIS.2019.00110","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of high computational cost based on deep backbones (e.g., ResNet-50, ResNet-101, DenseNet-169) in the state-of-the-art method about object detector, this paper improves the capability of feature representations by using New Feature Pyramid module on the basis of fast lightweight backbone network (vgg-16), and finally establishes a fast and accurate detector. The architecture of our model is named New FPN (New Feature Pyramid Network). Based on the structure of Feature Pyramid Network, we design a novel New Feature Pyramid Network, which consists of a combination of top-down and bottom-up connections to fuse features across scales, and achieves high-level semantic feature map at all scales. The experimental results show that New FPN achieves state-of-the-art detection accuracy (i.e. 79.2%mAP) on PASCAL VOC 2007 with high efficiency (i.e. 73FPS).","PeriodicalId":294342,"journal":{"name":"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A New Feature Pyramid Network for Object Detection\",\"authors\":\"Yongqiang Zhao, Rui Han, Y. Rao\",\"doi\":\"10.1109/ICVRIS.2019.00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of high computational cost based on deep backbones (e.g., ResNet-50, ResNet-101, DenseNet-169) in the state-of-the-art method about object detector, this paper improves the capability of feature representations by using New Feature Pyramid module on the basis of fast lightweight backbone network (vgg-16), and finally establishes a fast and accurate detector. The architecture of our model is named New FPN (New Feature Pyramid Network). Based on the structure of Feature Pyramid Network, we design a novel New Feature Pyramid Network, which consists of a combination of top-down and bottom-up connections to fuse features across scales, and achieves high-level semantic feature map at all scales. The experimental results show that New FPN achieves state-of-the-art detection accuracy (i.e. 79.2%mAP) on PASCAL VOC 2007 with high efficiency (i.e. 73FPS).\",\"PeriodicalId\":294342,\"journal\":{\"name\":\"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRIS.2019.00110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS.2019.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

针对目前最先进的目标检测方法中基于深度骨干网(如ResNet-50、ResNet-101、DenseNet-169)计算成本高的问题,在快速轻量级骨干网(vg -16)的基础上,利用新特征金字塔模块提高特征表示能力,最终建立了快速准确的目标检测方法。我们的模型架构被命名为New FPN (New Feature Pyramid Network)。基于特征金字塔网络的结构,我们设计了一种新型的新特征金字塔网络,该网络由自顶向下和自底向上的连接相结合来融合跨尺度的特征,并在所有尺度上实现高层次的语义特征映射。实验结果表明,新FPN在PASCAL VOC 2007上达到了最高的检测精度(79.2%mAP),效率高达73FPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Feature Pyramid Network for Object Detection
Aiming at the problems of high computational cost based on deep backbones (e.g., ResNet-50, ResNet-101, DenseNet-169) in the state-of-the-art method about object detector, this paper improves the capability of feature representations by using New Feature Pyramid module on the basis of fast lightweight backbone network (vgg-16), and finally establishes a fast and accurate detector. The architecture of our model is named New FPN (New Feature Pyramid Network). Based on the structure of Feature Pyramid Network, we design a novel New Feature Pyramid Network, which consists of a combination of top-down and bottom-up connections to fuse features across scales, and achieves high-level semantic feature map at all scales. The experimental results show that New FPN achieves state-of-the-art detection accuracy (i.e. 79.2%mAP) on PASCAL VOC 2007 with high efficiency (i.e. 73FPS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信