基于批处理的多传感器跟踪粒子滤波的实现

R. Velmurugan, V. Cevher, J. McClellan
{"title":"基于批处理的多传感器跟踪粒子滤波的实现","authors":"R. Velmurugan, V. Cevher, J. McClellan","doi":"10.1109/CAMSAP.2007.4498014","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate fixed-point FPGA implementations of state space systems using Particle Filters, especially multi-target bearing and range tracking systems. These trackers operate either as independent organic trackers or as a joint tracker to estimate a moving target's state in the x-y plane. For the efficiency of the particle filter, we consider factorized posterior approximations based on the Laplacian approximation, which uses a Newton-Raphson search. We delineate the computation and memory resources needed for real-time performance of the range and bearing particle filter trackers. Our implementations are demonstrated using the Xilinx System Generator. As part of the FPGA implementation, a floating-point, soft- and hard-core implementation of the Newton search algorithm is also developed.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Implementation of Batch-Based Particle Filters for Multi-Sensor Tracking\",\"authors\":\"R. Velmurugan, V. Cevher, J. McClellan\",\"doi\":\"10.1109/CAMSAP.2007.4498014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we demonstrate fixed-point FPGA implementations of state space systems using Particle Filters, especially multi-target bearing and range tracking systems. These trackers operate either as independent organic trackers or as a joint tracker to estimate a moving target's state in the x-y plane. For the efficiency of the particle filter, we consider factorized posterior approximations based on the Laplacian approximation, which uses a Newton-Raphson search. We delineate the computation and memory resources needed for real-time performance of the range and bearing particle filter trackers. Our implementations are demonstrated using the Xilinx System Generator. As part of the FPGA implementation, a floating-point, soft- and hard-core implementation of the Newton search algorithm is also developed.\",\"PeriodicalId\":220687,\"journal\":{\"name\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2007.4498014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4498014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们演示了使用粒子滤波器的状态空间系统的定点FPGA实现,特别是多目标方位和距离跟踪系统。这些跟踪器既可以作为独立的有机跟踪器,也可以作为联合跟踪器来估计运动目标在x-y平面上的状态。为了提高粒子滤波的效率,我们考虑了基于拉普拉斯近似的分解后验近似,其中使用了牛顿-拉夫森搜索。我们描述了距离和方位粒子滤波跟踪器实时性能所需的计算和内存资源。使用Xilinx System Generator演示了我们的实现。作为FPGA实现的一部分,还开发了牛顿搜索算法的浮点、软核和硬核实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Batch-Based Particle Filters for Multi-Sensor Tracking
In this paper, we demonstrate fixed-point FPGA implementations of state space systems using Particle Filters, especially multi-target bearing and range tracking systems. These trackers operate either as independent organic trackers or as a joint tracker to estimate a moving target's state in the x-y plane. For the efficiency of the particle filter, we consider factorized posterior approximations based on the Laplacian approximation, which uses a Newton-Raphson search. We delineate the computation and memory resources needed for real-time performance of the range and bearing particle filter trackers. Our implementations are demonstrated using the Xilinx System Generator. As part of the FPGA implementation, a floating-point, soft- and hard-core implementation of the Newton search algorithm is also developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信