代数过程微积分

E. Beffara
{"title":"代数过程微积分","authors":"E. Beffara","doi":"10.1109/LICS.2008.40","DOIUrl":null,"url":null,"abstract":"We present an extension of the piI-calculus with formal sums of terms. A study of the properties of this sum reveals that its neutral element can be used to make assumptions about the behaviour of the environment of a process. Furthermore, the formal sum appears as a fundamental construct that can be used to decompose both internal and external choice. From these observations, we derive an enriched calculus that enjoys a confluent reduction which preserves the testing semantics of processes. This system is shown to be strongly normalising for terms without replication, and the study of its normal forms provides fully abstract trace semantics for testing of piI processes.","PeriodicalId":298300,"journal":{"name":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Algebraic Process Calculus\",\"authors\":\"E. Beffara\",\"doi\":\"10.1109/LICS.2008.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an extension of the piI-calculus with formal sums of terms. A study of the properties of this sum reveals that its neutral element can be used to make assumptions about the behaviour of the environment of a process. Furthermore, the formal sum appears as a fundamental construct that can be used to decompose both internal and external choice. From these observations, we derive an enriched calculus that enjoys a confluent reduction which preserves the testing semantics of processes. This system is shown to be strongly normalising for terms without replication, and the study of its normal forms provides fully abstract trace semantics for testing of piI processes.\",\"PeriodicalId\":298300,\"journal\":{\"name\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2008.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2008.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们用形式项和对pi -微积分进行了推广。对这个和的性质的研究表明,它的中性元素可以用来对过程的环境行为做出假设。此外,形式和似乎是一个基本结构,可用于分解内部和外部选择。从这些观察中,我们得到了一个丰富的微积分,它具有合流约简,保留了过程的测试语义。该系统被证明对于没有复制的术语是强规范化的,并且对其范式的研究为piI过程的测试提供了完全抽象的跟踪语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algebraic Process Calculus
We present an extension of the piI-calculus with formal sums of terms. A study of the properties of this sum reveals that its neutral element can be used to make assumptions about the behaviour of the environment of a process. Furthermore, the formal sum appears as a fundamental construct that can be used to decompose both internal and external choice. From these observations, we derive an enriched calculus that enjoys a confluent reduction which preserves the testing semantics of processes. This system is shown to be strongly normalising for terms without replication, and the study of its normal forms provides fully abstract trace semantics for testing of piI processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信