实时传感器网络应用的时空关联规则挖掘框架

H. Chok, L. Gruenwald
{"title":"实时传感器网络应用的时空关联规则挖掘框架","authors":"H. Chok, L. Gruenwald","doi":"10.1145/1645953.1646224","DOIUrl":null,"url":null,"abstract":"In this paper, we present a data mining framework to estimate missing or corrupted data in sensor network applications - a frequently occurring phenomenon in this domain. The framework is naturally germane to the spatio-temporal analysis of relational data stream evolution. Our method utilizes association rules to capture spatio-temporal correlations in multivariate, dynamically evolving, and unbounded sensor data streams. Existing approaches that tackled this problem do not account for the multi-dimensionality of the node data and their relationship; furthermore they entail simplistic and/or premature assumptions on the temporal and spatial factors to overcome the complexity of the streaming environment. Our technique, called Mining Autonomously Spatio-Temporal Environmental Rules (MASTER), comprehensively formulates the problem of mining patterns in sensor data streams, and yet remains provably adaptive to bounded time and space costs while probabilistically assuring a bounded estimation error. Simulation experiments show MASTER's efficiency in terms of overhead as well as the quality of estimation.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Spatio-temporal association rule mining framework for real-time sensor network applications\",\"authors\":\"H. Chok, L. Gruenwald\",\"doi\":\"10.1145/1645953.1646224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a data mining framework to estimate missing or corrupted data in sensor network applications - a frequently occurring phenomenon in this domain. The framework is naturally germane to the spatio-temporal analysis of relational data stream evolution. Our method utilizes association rules to capture spatio-temporal correlations in multivariate, dynamically evolving, and unbounded sensor data streams. Existing approaches that tackled this problem do not account for the multi-dimensionality of the node data and their relationship; furthermore they entail simplistic and/or premature assumptions on the temporal and spatial factors to overcome the complexity of the streaming environment. Our technique, called Mining Autonomously Spatio-Temporal Environmental Rules (MASTER), comprehensively formulates the problem of mining patterns in sensor data streams, and yet remains provably adaptive to bounded time and space costs while probabilistically assuring a bounded estimation error. Simulation experiments show MASTER's efficiency in terms of overhead as well as the quality of estimation.\",\"PeriodicalId\":286251,\"journal\":{\"name\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1645953.1646224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们提出了一个数据挖掘框架来估计传感器网络应用中的丢失或损坏数据-这是该领域常见的现象。该框架自然与关系数据流演化的时空分析密切相关。我们的方法利用关联规则来捕获多变量、动态发展和无界传感器数据流中的时空相关性。解决这个问题的现有方法没有考虑到节点数据的多维性及其关系;此外,它们需要对时间和空间因素进行简单和/或过早的假设,以克服流环境的复杂性。我们的技术,称为挖掘自主时空环境规则(MASTER),全面阐述了传感器数据流中挖掘模式的问题,并且仍然可以证明自适应有限的时间和空间成本,同时概率上确保有界估计误差。仿真实验证明了MASTER算法在开销和估计质量方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal association rule mining framework for real-time sensor network applications
In this paper, we present a data mining framework to estimate missing or corrupted data in sensor network applications - a frequently occurring phenomenon in this domain. The framework is naturally germane to the spatio-temporal analysis of relational data stream evolution. Our method utilizes association rules to capture spatio-temporal correlations in multivariate, dynamically evolving, and unbounded sensor data streams. Existing approaches that tackled this problem do not account for the multi-dimensionality of the node data and their relationship; furthermore they entail simplistic and/or premature assumptions on the temporal and spatial factors to overcome the complexity of the streaming environment. Our technique, called Mining Autonomously Spatio-Temporal Environmental Rules (MASTER), comprehensively formulates the problem of mining patterns in sensor data streams, and yet remains provably adaptive to bounded time and space costs while probabilistically assuring a bounded estimation error. Simulation experiments show MASTER's efficiency in terms of overhead as well as the quality of estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信