一种从社交媒体因素中提取tweet的方法

Shiva Shankar Reddy, K. Murthy, Dr Chinta Someswara Rao, Vmnssvkr Gupta
{"title":"一种从社交媒体因素中提取tweet的方法","authors":"Shiva Shankar Reddy, K. Murthy, Dr Chinta Someswara Rao, Vmnssvkr Gupta","doi":"10.1109/ICSCAN.2018.8541226","DOIUrl":null,"url":null,"abstract":"News media provides the information to the public about the regular events. Now-a-days social networks, such as twitter provides the user generated data about the news related contents. For this resource to be useful we must cluster the data and provides only the useful information. In this we used density based k-means algorithm and graph clustering algorithm for filtering the data. After filteration we rank the data based on frequency of keywords, relevant key terms and finally based on key term similarity in the dataset. We can also extend to other topics besides news, such as science, technology, sports, and other trends.","PeriodicalId":378798,"journal":{"name":"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An approach for extracting tweets from social media factors\",\"authors\":\"Shiva Shankar Reddy, K. Murthy, Dr Chinta Someswara Rao, Vmnssvkr Gupta\",\"doi\":\"10.1109/ICSCAN.2018.8541226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"News media provides the information to the public about the regular events. Now-a-days social networks, such as twitter provides the user generated data about the news related contents. For this resource to be useful we must cluster the data and provides only the useful information. In this we used density based k-means algorithm and graph clustering algorithm for filtering the data. After filteration we rank the data based on frequency of keywords, relevant key terms and finally based on key term similarity in the dataset. We can also extend to other topics besides news, such as science, technology, sports, and other trends.\",\"PeriodicalId\":378798,\"journal\":{\"name\":\"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCAN.2018.8541226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN.2018.8541226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

新闻媒体向公众提供有关日常事件的信息。如今的社交网络,如twitter,为用户提供有关新闻相关内容的生成数据。为了使这个资源有用,我们必须将数据聚类并只提供有用的信息。在此,我们使用基于密度的k-means算法和图聚类算法来过滤数据。过滤后,我们根据关键词的出现频率、相关关键词的出现频率以及关键词在数据集中的相似度对数据进行排序。除了新闻,我们还可以扩展到其他话题,比如科学、技术、体育和其他趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach for extracting tweets from social media factors
News media provides the information to the public about the regular events. Now-a-days social networks, such as twitter provides the user generated data about the news related contents. For this resource to be useful we must cluster the data and provides only the useful information. In this we used density based k-means algorithm and graph clustering algorithm for filtering the data. After filteration we rank the data based on frequency of keywords, relevant key terms and finally based on key term similarity in the dataset. We can also extend to other topics besides news, such as science, technology, sports, and other trends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信