基于自适应神经滤波的电流谐波补偿单相并联有源电力滤波器

M. Cirrincione, M. Pucci, G. Vitale, G. Scordato
{"title":"基于自适应神经滤波的电流谐波补偿单相并联有源电力滤波器","authors":"M. Cirrincione, M. Pucci, G. Vitale, G. Scordato","doi":"10.1080/09398368.2009.11463705","DOIUrl":null,"url":null,"abstract":"This paper presents a single-phase shunt active power filter for current harmonic compensation based on neural filtering. The shunt active filter, realized by a current controlled inverter, has been used to compensate a nonlinear current load by receiving its reference from a neural adaptive notch filter. This is a recursive notch filter for the fundamental grid frequency (50 Hz) and is based on the use of a linear adaptive neuron (ADALINE). In this way the inverter creates a current equal in amplitude and opposite in sign to the load harmonic current, thus creating an almost sinusoidal grid current. The methodology has been applied in numerical simulations and experimentally on a properly devised test setup. With this regard, a reduced scale electrical grid has been built and used for assessing this methodology.","PeriodicalId":401288,"journal":{"name":"2006 12th International Power Electronics and Motion Control Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Single-Phase Shunt Active Power Filter for Current Harmonic Compensation by Adaptive Neural Filtering\",\"authors\":\"M. Cirrincione, M. Pucci, G. Vitale, G. Scordato\",\"doi\":\"10.1080/09398368.2009.11463705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a single-phase shunt active power filter for current harmonic compensation based on neural filtering. The shunt active filter, realized by a current controlled inverter, has been used to compensate a nonlinear current load by receiving its reference from a neural adaptive notch filter. This is a recursive notch filter for the fundamental grid frequency (50 Hz) and is based on the use of a linear adaptive neuron (ADALINE). In this way the inverter creates a current equal in amplitude and opposite in sign to the load harmonic current, thus creating an almost sinusoidal grid current. The methodology has been applied in numerical simulations and experimentally on a properly devised test setup. With this regard, a reduced scale electrical grid has been built and used for assessing this methodology.\",\"PeriodicalId\":401288,\"journal\":{\"name\":\"2006 12th International Power Electronics and Motion Control Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 12th International Power Electronics and Motion Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09398368.2009.11463705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09398368.2009.11463705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于神经网络滤波的单相并联有源电力电流谐波补偿滤波器。并联有源滤波器由电流控制逆变器实现,通过接收神经网络自适应陷波滤波器的参考信号来补偿非线性电流负载。这是一个基本网格频率(50 Hz)的递归陷波滤波器,基于线性自适应神经元(ADALINE)的使用。通过这种方式,逆变器产生一个与负载谐波电流振幅相等、符号相反的电流,从而产生一个几乎正弦的电网电流。该方法已在数值模拟和实验中得到应用。在这方面,已经建立了一个缩小规模的电网,并用于评估这一方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Single-Phase Shunt Active Power Filter for Current Harmonic Compensation by Adaptive Neural Filtering
This paper presents a single-phase shunt active power filter for current harmonic compensation based on neural filtering. The shunt active filter, realized by a current controlled inverter, has been used to compensate a nonlinear current load by receiving its reference from a neural adaptive notch filter. This is a recursive notch filter for the fundamental grid frequency (50 Hz) and is based on the use of a linear adaptive neuron (ADALINE). In this way the inverter creates a current equal in amplitude and opposite in sign to the load harmonic current, thus creating an almost sinusoidal grid current. The methodology has been applied in numerical simulations and experimentally on a properly devised test setup. With this regard, a reduced scale electrical grid has been built and used for assessing this methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信