{"title":"基于自适应神经滤波的电流谐波补偿单相并联有源电力滤波器","authors":"M. Cirrincione, M. Pucci, G. Vitale, G. Scordato","doi":"10.1080/09398368.2009.11463705","DOIUrl":null,"url":null,"abstract":"This paper presents a single-phase shunt active power filter for current harmonic compensation based on neural filtering. The shunt active filter, realized by a current controlled inverter, has been used to compensate a nonlinear current load by receiving its reference from a neural adaptive notch filter. This is a recursive notch filter for the fundamental grid frequency (50 Hz) and is based on the use of a linear adaptive neuron (ADALINE). In this way the inverter creates a current equal in amplitude and opposite in sign to the load harmonic current, thus creating an almost sinusoidal grid current. The methodology has been applied in numerical simulations and experimentally on a properly devised test setup. With this regard, a reduced scale electrical grid has been built and used for assessing this methodology.","PeriodicalId":401288,"journal":{"name":"2006 12th International Power Electronics and Motion Control Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Single-Phase Shunt Active Power Filter for Current Harmonic Compensation by Adaptive Neural Filtering\",\"authors\":\"M. Cirrincione, M. Pucci, G. Vitale, G. Scordato\",\"doi\":\"10.1080/09398368.2009.11463705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a single-phase shunt active power filter for current harmonic compensation based on neural filtering. The shunt active filter, realized by a current controlled inverter, has been used to compensate a nonlinear current load by receiving its reference from a neural adaptive notch filter. This is a recursive notch filter for the fundamental grid frequency (50 Hz) and is based on the use of a linear adaptive neuron (ADALINE). In this way the inverter creates a current equal in amplitude and opposite in sign to the load harmonic current, thus creating an almost sinusoidal grid current. The methodology has been applied in numerical simulations and experimentally on a properly devised test setup. With this regard, a reduced scale electrical grid has been built and used for assessing this methodology.\",\"PeriodicalId\":401288,\"journal\":{\"name\":\"2006 12th International Power Electronics and Motion Control Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 12th International Power Electronics and Motion Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09398368.2009.11463705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09398368.2009.11463705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Single-Phase Shunt Active Power Filter for Current Harmonic Compensation by Adaptive Neural Filtering
This paper presents a single-phase shunt active power filter for current harmonic compensation based on neural filtering. The shunt active filter, realized by a current controlled inverter, has been used to compensate a nonlinear current load by receiving its reference from a neural adaptive notch filter. This is a recursive notch filter for the fundamental grid frequency (50 Hz) and is based on the use of a linear adaptive neuron (ADALINE). In this way the inverter creates a current equal in amplitude and opposite in sign to the load harmonic current, thus creating an almost sinusoidal grid current. The methodology has been applied in numerical simulations and experimentally on a properly devised test setup. With this regard, a reduced scale electrical grid has been built and used for assessing this methodology.